Changes in the Association between GDP and Night-Time Lights during the COVID-19 Pandemic: A Subnational-Level Analysis for the US
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.1.1. NTL Data Source and Their Processing
2.1.2. Socio-Economic Characteristics of the States
2.2. Methodology
3. Results
3.1. NTL–GDP Association
3.2. State-Wise Economic Losses Due to the Pandemic
3.3. Socio-Economic Characteristics vs. State-Wise Economic Losses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
State | Maximum Loss | Total Loss | Quarters Until Recovery | GDP pc | Minority % | Share of High Services | Share of Low Services |
---|---|---|---|---|---|---|---|
AL | 0.107 | 0.069 | 6 | 0.041 | 0.309 | 0.249 | 0.052 |
AZ | 0.081 | 0.035 | 3 | 0.044 | 0.174 | 0.319 | 0.060 |
AR | 0.084 | 0.038 | 4 | 0.039 | 0.210 | 0.208 | 0.054 |
CA | 0.107 | 0.052 | 4 | 0.069 | 0.281 | 0.386 | 0.057 |
CO | 0.097 | 0.059 | 5 | 0.062 | 0.131 | 0.359 | 0.065 |
CT | 0.127 | 0.114 | 8 | 0.071 | 0.203 | 0.415 | 0.050 |
DE | 0.096 | 0.084 | 7 | 0.066 | 0.308 | 0.496 | 0.040 |
DC | 0.072 | 0.071 | 6 | 0.176 | 0.540 | 0.400 | 0.112 |
FL | 0.102 | 0.051 | 5 | 0.045 | 0.227 | 0.359 | 0.080 |
GA | 0.105 | 0.069 | 5 | 0.053 | 0.398 | 0.378 | 0.046 |
ID | 0.085 | 0.026 | 2 | 0.041 | 0.070 | 0.252 | 0.054 |
IL | 0.114 | 0.091 | 7 | 0.061 | 0.232 | 0.349 | 0.060 |
IN | 0.113 | 0.041 | 4 | 0.050 | 0.152 | 0.221 | 0.054 |
IA | 0.093 | 0.044 | 4 | 0.055 | 0.094 | 0.290 | 0.046 |
KS | 0.100 | 0.065 | 5 | 0.055 | 0.137 | 0.278 | 0.046 |
KY | 0.117 | 0.068 | 5 | 0.043 | 0.125 | 0.228 | 0.054 |
LA | 0.124 | 0.140 | 8 | 0.051 | 0.372 | 0.215 | 0.055 |
ME | 0.090 | 0.035 | 3 | 0.044 | 0.056 | 0.295 | 0.071 |
MD | 0.103 | 0.095 | 8 | 0.061 | 0.415 | 0.354 | 0.057 |
MA | 0.107 | 0.056 | 5 | 0.075 | 0.194 | 0.420 | 0.057 |
MI | 0.140 | 0.072 | 5 | 0.047 | 0.208 | 0.291 | 0.054 |
MN | 0.102 | 0.067 | 5 | 0.060 | 0.162 | 0.303 | 0.050 |
MS | 0.110 | 0.061 | 4 | 0.034 | 0.409 | 0.205 | 0.063 |
MO | 0.099 | 0.062 | 5 | 0.047 | 0.171 | 0.303 | 0.061 |
MT | 0.081 | 0.034 | 3 | 0.044 | 0.111 | 0.255 | 0.068 |
NE | 0.092 | 0.036 | 3 | 0.061 | 0.119 | 0.287 | 0.043 |
NV | 0.189 | 0.139 | 7 | 0.051 | 0.261 | 0.278 | 0.167 |
NH | 0.100 | 0.030 | 3 | 0.057 | 0.069 | 0.348 | 0.073 |
NJ | 0.127 | 0.090 | 7 | 0.063 | 0.281 | 0.359 | 0.049 |
NM | 0.098 | 0.100 | 8 | 0.045 | 0.181 | 0.240 | 0.061 |
NY | 0.116 | 0.092 | 7 | 0.077 | 0.304 | 0.494 | 0.063 |
NC | 0.104 | 0.048 | 4 | 0.049 | 0.294 | 0.304 | 0.055 |
ND | 0.084 | 0.103 | 8 | 0.074 | 0.131 | 0.191 | 0.039 |
OH | 0.114 | 0.075 | 6 | 0.052 | 0.183 | 0.287 | 0.052 |
OK | 0.114 | 0.133 | 8 | 0.051 | 0.260 | 0.189 | 0.048 |
OR | 0.105 | 0.070 | 5 | 0.052 | 0.133 | 0.290 | 0.061 |
PA | 0.125 | 0.095 | 7 | 0.056 | 0.184 | 0.325 | 0.053 |
RI | 0.109 | 0.058 | 5 | 0.050 | 0.164 | 0.316 | 0.069 |
SC | 0.100 | 0.040 | 4 | 0.041 | 0.314 | 0.271 | 0.065 |
SD | 0.064 | 0.018 | 2 | 0.053 | 0.154 | 0.296 | 0.053 |
TN | 0.136 | 0.055 | 4 | 0.048 | 0.216 | 0.267 | 0.079 |
TX | 0.103 | 0.071 | 5 | 0.062 | 0.213 | 0.263 | 0.046 |
UT | 0.065 | 0.024 | 3 | 0.053 | 0.094 | 0.328 | 0.057 |
VT | 0.123 | 0.094 | 7 | 0.048 | 0.058 | 0.287 | 0.083 |
VA | 0.091 | 0.065 | 6 | 0.057 | 0.306 | 0.366 | 0.055 |
WA | 0.079 | 0.030 | 2 | 0.070 | 0.215 | 0.396 | 0.050 |
WV | 0.103 | 0.068 | 5 | 0.040 | 0.065 | 0.194 | 0.052 |
WI | 0.110 | 0.090 | 7 | 0.052 | 0.130 | 0.283 | 0.052 |
WY | 0.121 | 0.177 | 8 | 0.067 | 0.075 | 0.168 | 0.049 |
Year 2019 GDPpc (log) | Minority Ratio (log) | Services with the Remote Working Opportunities (log) | Services with the Limited Remote Working Opportunities (log) | |
---|---|---|---|---|
2019 GDPpc (log) | 1.00 | |||
Minority ratio (log) | 0.27 | 1.00 | ||
Services with the remote working opportunities (log) | 0.50 | 0.31 | 1.00 | |
Services with the limited remote working opportunities (log) | 0.06 | 0.08 | 0.12 | 1.00 |
References
- Croft, T.A. Nighttime Images of the Earth from Space. Sci. Am. 1978, 239, 86–98. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Doll, C.H.; Muller, J.-P.; Elvidge, C.D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.C. From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geogr. 2005, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comput. Geosci. 2009, 35, 1652–1660. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Mellander, C.; Lobo, J.; Stolarick, K.; Matheson, Z. Night-time light data: A good proxy measure for economic activity? PLoS ONE 2015, 10, e0139779. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional Inequality in China Based on NPP-VIIRS Night-Time Light Imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef]
- Gibson, J.; Boe-Gibson, G. Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019. Remote Sens. 2021, 13, 2741. [Google Scholar] [CrossRef]
- Sutton, P.; Roberts, D.; Elvidge, C.; Baugh, K. Census from Heaven: An estimate of the global human population using night-time satellite imagery. Int. J. Remote Sens. 2001, 22, 3061–3076. [Google Scholar] [CrossRef]
- Amaral, S.; Monteiro, A.M.V.; Camara, G.; Quintanilha, J.A. DMSP/OLS night-time light imagery for urban population estimates in the Brazilian Amazon. Int. J. Remote Sens. 2006, 27, 855–870. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C. Characterizing relationships between population density and nighttime imagery for Denver, Colorado: Issues of scale and representation. Int. J. Remote Sens. 2010, 31, 5733–5746. [Google Scholar] [CrossRef]
- Hopkins, G.R.; Gaston, K.J.; Visser, M.E.; Elgar, M.A.; Jones, T.M. Artificial light at night as a driver of evolution across urban-rural landscapes. Front. Ecol. Environ. 2018, 16, 472–479. [Google Scholar] [CrossRef]
- Stokes, E.C.; Seto, K.C. Characterizing urban infrastructural transitions for the Sustainable Development Goals using multi-temporal land, population, and nighttime light data. Remote Sens. Environ. 2019, 234, 111430. [Google Scholar] [CrossRef]
- Kloog, I.; Haim, A.; Stevens, R.G.; Portnov, B.A. Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol. Int. 2009, 26, 108–125. [Google Scholar] [CrossRef]
- Kloog, I.; Stevens, R.G.; Haim, A.; Portnov, B.A. Nighttime light level co-distributes with breast cancer incidence worldwide. Cancer Causes Control 2010, 21, 2059–2068. [Google Scholar] [CrossRef]
- Haim, A.; Portnov, B.A. Light Pollution as a New Risk Factor for Human Breast and Prostate Cancers; Springer: Dordrecht, The Netherlands, 2013; ISBN 9789400762206. [Google Scholar]
- Rybnikova, N.; Haim, A.; Portnov, B.A. Artificial Light at Night (ALAN) and breast cancer incidence worldwide: A revisit of earlier findings with analysis of current trends. Chronobiol. Int. 2015, 32, 757–773. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Portnov, B.A. Outdoor light and breast cancer incidence: A comparative analysis of DMSP and VIIRS-DNB satellite data. Int. J. Remote Sens. 2017, 38, 5952–5961. [Google Scholar] [CrossRef]
- Meng, L.; Graus, W.; Worrell, E.; Huang, B. Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan System) nighttime light imagery: Methodological challenges and a case study for China. Energy 2014, 71, 468–478. [Google Scholar] [CrossRef]
- Ou, J.; Liu, X.; Li, X.; Li, M.; Li, W. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO2 emissions: A comparison with DMSP-OLS nighttime light data. PLoS ONE 2015, 10, e0138310. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, G.; Yue, Y.; Lai, Z.; Chen, Y.; Yang, D.; Yang, X.; Wang, Z. Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets. Appl. Energy 2019, 235, 612–624. [Google Scholar] [CrossRef]
- Lv, Q.; Liu, H.; Wang, J.; Liu, H.; Shang, Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci. Total Environ. 2020, 703, 134394. [Google Scholar] [CrossRef]
- Levin, N.; Kyba, C.C.M.; Zhang, Q.; Sánchez de Miguel, A.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Ghosh, T.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M. The dimming of lights in China during the COVID-19 pandemic. Remote Sens. 2020, 12, 2851. [Google Scholar] [CrossRef]
- Ghosh, T.; Elvidge, C.D.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M. The dimming of lights in India during the COVID-19 pandemic. Remote Sens. 2020, 12, 3289. [Google Scholar] [CrossRef]
- Xu, G.; Xiu, T.; Li, X.; Liang, X.; Jiao, L. Lockdown induced night-time light dynamics during the COVID-19 epidemic in global megacities. Elsevier 2021, 102, 102421. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, G.; Mu, X.; Xie, D.; Xu, J.; Zhang, Z.; Zhang, D. Human Activity Changes During COVID-19 Lockdown in China—A View From Nighttime Light. Geohealth 2022, 6, e2021GH000555. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M. Tracking economic activity in response to the COVID-19 crisis using nighttime lights–The case of Morocco. Dev. Eng. 2021, 6, 100067. [Google Scholar] [CrossRef] [PubMed]
- Research, N. Using satellite images of nighttime lights to predict the economic impact of COVID-19 in India. Elsevier 2022, 70, 863–879. [Google Scholar]
- VIIRS Stray Light Corrected Nighttime Day/Night Band Composites Version 1|Earth Engine Data Catalog|Google Developers. Available online: https://developers.google.com/earth-engine/datasets/catalog/NOAA_VIIRS_DNB_MONTHLY_V1_VCMSLCFG?hl=en#description (accessed on 1 September 2022).
- VIIRS Nighttime Light. Available online: https://eogdata.mines.edu/products/vnl/ (accessed on 1 September 2022).
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- BEA: Regional Economic Accounts. Available online: https://apps.bea.gov/regional/downloadzip.cfm (accessed on 1 September 2022).
- Pardhan, S.; Drydakis, N. Associating the change in new COVID-19 cases to GDP per capita in 38 European countries in the first wave of the pandemic. Front. Public Health 2021, 8, 582140. [Google Scholar] [CrossRef] [PubMed]
- Martinho, V.J.P.D. Impact of Covid-19 on the convergence of GDP per capita in OECD countries. Reg. Sci. Policy Pract. 2021, 13, 55–72. [Google Scholar] [CrossRef]
- Organisation for Economic Co-Operation and Development. The Territorial Impact of COVID-19: Managing the Crisis and Recovery across Levels of Government; OECD Publishing: London, UK, 2021. [Google Scholar]
- Bauer, L.; Broady, K.E.; Edelberg, W.; O’Donnell, J. Ten Facts about COVID-19 and the US Economy; Brookings Institution: Washington, DC, USA, 2020; Available online: https://www.brookings.edu/wp-content/uploads/2020/09/FutureShutdowns_Facts_LO_Final.pdf (accessed on 31 January 2023).
- Hardy, B.L.; Logan, T.D. Racial Economic Inequality Amid the COVID-19 Crisis. Hamilt. Proj. 2020. Available online: https://www.brookings.edu/wp-content/uploads/2020/08/EA_HardyLogan_LO_8.12.pdf?search=iris%20rose%20bbc (accessed on 31 January 2023).
- State Population by Characteristics: 2010-2019 (census.gov). Available online: https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-detail.
- GeoDa on Github. Available online: https://geodacenter.github.io/ (accessed on 17 March 2020).
- Levin, N. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 2017, 193, 150–164. [Google Scholar] [CrossRef]
- Yuan, X.; Jia, L.; Menenti, M.; Zhou, J.; Chen, Q. Filtering the NPP-VIIRS nighttime light data for improved detection of settlements in Africa. Remote Sens. 2019, 11, 3002. [Google Scholar] [CrossRef]
- Giovannetti, G.; Perra, E. Syria in the Dark: Estimating the Economic Consequences of the Civil War through Satellite-Derived Night Time Lights. Work. Pap. Econ. 2019. Available online: https://www.disei.unifi.it/upload/sub/pubblicazioni/repec/pdf/wp05_2019.pdf (accessed on 31 January 2023).
- Tveit, T.; Skoufias, E.; Strobl, E. Using VIIRS nightlights to estimate the impact of the 2015 Nepal earthquakes. Geoenvironmental Disasters 2022, 9, 2. [Google Scholar] [CrossRef]
- Ettlinger, M. COVID-19 Economic Crisis: By State|Carsey School of Public Policy|UNH. Available online: https://carsey.unh.edu/publication/COVID-19-Economic-Impact-By-State (accessed on 1 September 2022).
- Breaux, C.; Fernandez, J.; Griffis, B. Not All Industries Experienced Declines During the Pandemic. Available online: https://www.census.gov/library/stories/2021/06/not-all-industries-experienced-declines-during-pandemic.html (accessed on 1 September 2022).
- Klein, A.; Smith, E. Explaining the Economic Impact of COVID-19: Core Industries and the Hispanic Workforce. In Policy Briefs Rep.; Brookings Mountain West: Las Vegas, Nevada, 2021; Available online: https://www.nevadacurrent.com/wp-content/uploads/2021/02/Explaining-the-Economic-Impact-of-COVID-19_-Core-Industries-and-t.pdf.
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef]
- Yao, J. Illuminating Economic Growth Using Satellite Images—IMF F&D. Available online: https://www.imf.org/Publications/fandd/issues/2019/09/satellite-images-at-night-and-economic-growth-yao (accessed on 1 September 2022).
- Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef] [PubMed]
- Shettle, E.P.; Fenn, R.W. Models of the Atmospheric Aerosols and Their Optical Properties. Opa 1976. Available online: https://ui.adsabs.harvard.edu/abs/1976opa..agarQ....S/abstract (accessed on 31 January 2023).
- Román, M.O.; Wang, Z.; Sun, Q.; Kalb, V.; Miller, S.D.; Molthan, A.; Schultz, L.; Bell, J.; Stokes, E.C.; Pandey, B.; et al. NASA’s Black Marble nighttime lights product suite. Remote Sens. Environ. 2018, 210, 113–143. [Google Scholar] [CrossRef]
Predictors and Summary Statistics | Model 1: Log(GDP), yy 2014–2019 | Model 2: Log(GDP), yy 2014–2021 | Model 3: Log(GDP), yy 2014–2021 |
---|---|---|---|
Log(SoL) | 0.013 ** (2.08) | 0.010 (1.37) | 0.025 *** (4.01) |
Year adjusted | 0.016 *** (31.91) | 0.117 *** (25.72) | 0.015 *** (27.92) |
Q2 dummy | 0.010 *** (3.64) | −0.004 (−1.39) | 0.013 *** (4.45) |
Q3 dummy | 0.163 *** (5.44) | 0.012 *** (3.63) | 0.020 *** (6.40) |
Q4 dummy | 0.019 *** (7.73) | 0.017 *** (5.96) | 0.020 *** (7.70) |
2020 * Q1 dummy | - | - | −0.001 (−0.26) |
2020 * Q2 dummy | - | - | −0.107 *** (−22.60) |
2020 * Q3 dummy | - | - | −0.037 *** (−7.97) |
2020 * Q4 dummy | - | - | −0.030 *** (−5.93) |
2021 * Q1 dummy | - | - | −0.014 ** (−2.47) |
2021 * Q2 dummy | - | - | −0.012 ** (−2.34) |
2021 * Q3 dummy | - | - | −0.013 *** (−2.71) |
2021 * Q4 dummy | - | - | −0.005 (−0.90) |
Constant | 10.629 *** (77.83) | 10.685 *** (72.02) | 10.457 *** (74.64) |
R2 within | 0.60 | 0.42 | 0.62 |
R2 between | 0.02 | 0.01 | 0.03 |
R2-adjusted | 0.35 | 0.18 | 0.37 |
Number of obs. | 897 | 1244 | 1244 |
Predictors and Summary Statistics | Model 4: Log(Max Loss) | Model 5: Log(Total Loss) | Model 6: Log(N. of Quarters) |
---|---|---|---|
2019 GDPpc (log) | −4.284 *** (−4.47) | −7.345 *** (−2.95) | −4.683 ** (−2.28) |
2019 GDPpc (log, squared term) | −0.789 *** (−4.37) | −1.522 *** (−3.24) | −0.979 ** (−2.52) |
Minority ratio (log) | 0.134 *** (2.94) | 0.401 *** (3.40) | 0.305 *** (3.13) |
Services with the remote working opportunities (log) | −0.292 ** (−2.45) | −1.233 *** (−3.99) | −0.723 *** (−2.83) |
Services with the limited remote working opportunities (log) | 0.424 *** (4.03) | 0.492 * (1.80) | 0.262 (1.16) |
Constant | −6.924 *** (−5.90) | −10.586 *** (−3.47) | −3.295 (−1.31) |
R2 | 0.404 | 0.385 | 0.306 |
R2-adjusted | 0.335 | 0.314 | 0.226 |
Moran’s I | 3.306 *** | 1.065 | 2.376 ** |
Number of obs. | 49 | 49 | 49 |
Predictors and Summary Statistics | Model 4a: Log(Max Loss) | Model 5a: Log(Total Loss) | Model 6a: Log(N. of Quarters) |
---|---|---|---|
2019 GDPpc (log) | −4.014 *** (−5.86) | −7.330 *** (−3.32) | −5.085 *** (−3.17) |
2019 GDPpc (log, squared term) | −0.762 *** (−5.85) | −1.525 *** (−3.65) | −1.057 *** (−3.47) |
Minority ratio (log) | 0.107 ** (2.16) | 0.376 *** (3.10) | 0.244 ** (2.26) |
Services with the remote working opportunities (log) | −0.514 *** (−5.20) | −1.431 *** (−4.89) | −1.081 *** (−4.75) |
Services with the limited remote working opportunities (log) | 0.436 *** (5.48) | 0.525 * (2.10) | 0.333 * (1.79) |
Constant | −6.651 *** (−7.79) | −10.699 *** (−3.92) | −4.132 ** (−2.07) |
λ | 0.615 *** (4.98) | 0.224 (1.22) | 0.516 *** (3.62) |
R2 | 0.574 | 0.401 | 0.427 |
Number of obs. | 49 | 49 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, T.; Rybnikova, N. Changes in the Association between GDP and Night-Time Lights during the COVID-19 Pandemic: A Subnational-Level Analysis for the US. Geomatics 2023, 3, 156-173. https://doi.org/10.3390/geomatics3010008
Lin T, Rybnikova N. Changes in the Association between GDP and Night-Time Lights during the COVID-19 Pandemic: A Subnational-Level Analysis for the US. Geomatics. 2023; 3(1):156-173. https://doi.org/10.3390/geomatics3010008
Chicago/Turabian StyleLin, Taohan, and Nataliya Rybnikova. 2023. "Changes in the Association between GDP and Night-Time Lights during the COVID-19 Pandemic: A Subnational-Level Analysis for the US" Geomatics 3, no. 1: 156-173. https://doi.org/10.3390/geomatics3010008
APA StyleLin, T., & Rybnikova, N. (2023). Changes in the Association between GDP and Night-Time Lights during the COVID-19 Pandemic: A Subnational-Level Analysis for the US. Geomatics, 3(1), 156-173. https://doi.org/10.3390/geomatics3010008