Detecting Connectivity and Spread Pathways of Land Use/Cover Change in a Transboundary Basin Based on the Circuit Theory
Abstract
:1. Introduction
Study Area
2. Methods
2.1. LULC Classification and Change Detection
2.2. Modelling Susceptibility of LULC Change
2.3. Mapping LULC Change Resistance Surface—An Input to Circuit Theory Modelling
2.4. Connectivity Modelling Based on the Circuit Theory
2.5. Validation of Connectivity Models
3. Results
4. Discussion
5. Conclusions
- (1)
- assess the role of LULC change susceptibility in modeling spread and connectivity of LULC change, and
- (2)
- model the spread pathways of LULC based on CT.
- (a)
- CT and connectivity modeling provides a new decision-making technique for predicting the spread pathways of LULC change.
- (b)
- there is a connectivity of LULC change observations for all categories of LULC change in the Okavango basin, which is a testament that LULC change has a facilitative effect. Hence, management focus should not only be given to patches of LULC change sites but also to potential spread pathways.
- (c)
- A total of 186 pinch points (57 for Category A, 71 for Category B, and 58 for Category C) were detected. The pinch points can be used for targeted management LULC change through the setting up of conservation areas, forest restoration projects, drought monitoring, and invasive species control.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Münch, Z.; Gibson, L.; Palmer, A. Monitoring Effects of Land Cover Change on Biophysical Drivers in Rangelands Using Albedo. Land 2019, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Digra, M.; Dhir, R.; Sharma, N. Land use land cover classification of remote sensing images based on the deep learning approaches: A statistical analysis and review. Arab. J. Geosci. 2022, 15, 1003. [Google Scholar] [CrossRef]
- Seybold, E.; Gold, A.J.; Inamdar, S.P.; Adair, C.; Bowden, W.B.; Vaughan, M.C.; Pradhanang, S.M.; Addy, K.; Shanley, J.B.; Vermilyea, A. Influence of land use and hydrologic variability on seasonal dissolved organic carbon and nitrate export: Insights from a multi-year regional analysis for the northeastern USA. Biogeochemistry 2019, 146, 31–49. [Google Scholar] [CrossRef]
- Martin, S.L.; Hayes, D.B.; Kendall, A.D.; Hyndman, D.W. The land-use legacy effect: Towards a mechanistic understanding of time-lagged water quality responses to land use/cover. Sci. Total Environ. 2017, 579, 1794–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Jia, Y.; Li, X.; Gong, P. Analysing the Driving Forces and Environmental Effects of Urban Expansion by Mapping the Speed and Acceleration of Built-Up Areas in China between 1978 and 2017. Remote Sens. 2020, 12, 3929. [Google Scholar] [CrossRef]
- Govender, T.; Dube, T.; Shoko, C. Remote sensing of land use-land cover change and climate variability on hydrological processes in Sub-Saharan Africa: Key scientific strides and challenges. Geocarto Int. 2022, 1–25. [Google Scholar] [CrossRef]
- Mati, B.M.; Morgan, R.P.; Gichuki, F.N.; Quinton, J.N.; Brewer, T.R.; Liniger, H.P. Assessment of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng’iro North basin of Kenya. Int. J. Appl. Earth Obs. Geoinf. 2000, 2, 78–86. [Google Scholar] [CrossRef]
- Domisch, S.; Kakouei, K.; Martínez-López, J.; Bagstad, K.J.; Magrach, A.; Balbi, S.; Villa, F.; Funk, A.; Hein, T.; Borgwardt, F. Social equity shapes zone-selection: Balancing aquatic biodiversity conservation and ecosystem services delivery in the transboundary Danube River Basin. Sci. Total Environ. 2019, 656, 797–807. [Google Scholar] [CrossRef]
- Hirbo Gelebo, A.; Kasiviswanathan, K.S.; Khare, D.; Pingale, S.M. Assessment of spatial and temporal distribution of surface water balance in a data-scarce African transboundary river basin. Hydrol. Sci. J. 2022, 67, 1561–1581. [Google Scholar] [CrossRef]
- Derdour, A.; Benkaddour, Y.; Bendahou, B. Application of remote sensing and GIS to assess groundwater potential in the transboundary watershed of the Chott-El-Gharbi (Algerian–Moroccan border). Appl. Water Sci. 2022, 12, 136. [Google Scholar] [CrossRef]
- Wu, C.; Du, B.; Cui, X.; Zhang, L. A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sens. Environ. 2017, 199, 241–255. [Google Scholar] [CrossRef]
- Yang, Y.; Nan, Y.; Liu, Z.; Zhang, D.; Sun, Y. Direct and indirect losses of natural habitat caused by future urban expansion in the transnational area of Changbai Mountain. Sustain. Cities Soc. 2020, 63, 102487. [Google Scholar] [CrossRef]
- Velázquez, E.; Martínez, I.; Getzin, S.; Moloney, K.A.; Wiegand, T. An evaluation of the state of spatial point pattern analysis in ecology. Ecography 2016, 39, 1042–1055. [Google Scholar] [CrossRef]
- Kamusoko, C.; Kamusoko, O.W.; Chikati, E.; Gamba, J. Mapping Urban and Peri-Urban Land Cover in Zimbabwe: Challenges and Opportunities. Geomatics 2021, 1, 114–147. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Cushman, S.A.; McRae, B.; Adriaensen, F.; Beier, P.; Shirley, M.; Zeller, K. Biological corridors and connectivity. Key Top. Conserv. Biol. 2013, 2, 384–404. [Google Scholar]
- Zeller, K.A.; McGarigal, K.; Whiteley, A.R. Estimating landscape resistance to movement: A review. Landsc. Ecol. 2012, 27, 777–797. [Google Scholar] [CrossRef]
- Cao, G.; Feng, C.; Tao, R. Local “land finance” in China’s urban expansion: Challenges and solutions. China World Econ. 2008, 16, 19–30. [Google Scholar] [CrossRef]
- Wang, Y.; Qu, Z.; Zhong, Q.; Zhang, Q.; Zhang, L.; Zhang, R.; Yi, Y.; Zhang, G.; Li, X.; Liu, J. Delimitation of ecological corridors in a highly urbanizing region based on circuit theory and MSPA. Ecol. Indic. 2022, 142, 109258. [Google Scholar] [CrossRef]
- Yu, H.; Gu, X.; Liu, G.; Fan, X.; Zhao, Q.; Zhang, Q. Construction of regional ecological security patterns based on multi-criteria decision making and circuit theory. Remote Sens. 2022, 14, 527. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Castella, J.-C.; Pheng Kam, S.; Dinh Quang, D.; Verburg, P.H.; Thai Hoanh, C. Combining top-down and bottom-up modelling approaches of land use/cover change to support public policies: Application to sustainable management of natural resources in northern Vietnam. Land Use Policy 2007, 24, 531–545. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Complexity and performance of urban expansion models. Comput. Environ. Urban Syst. 2010, 34, 17–27. [Google Scholar] [CrossRef]
- Talukdar, S.; Eibek, K.U.; Akhter, S.; Ziaul, S.K.; Islam, A.R.M.T.; Mallick, J. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecol. Indic. 2021, 126, 107612. [Google Scholar] [CrossRef]
- Jamali, A.A.; Ghorbani Kalkhajeh, R. Urban environmental and land cover change analysis using the scatter plot, kernel, and neural network methods. Arab. J. Geosci. 2019, 12, 100. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef]
- McRae, B.H.; Shah, V.B.; Edelman, A. Circuitscape: Modeling landscape connectivity to promote conservation and human health. Nat. Conserv. 2016, 14. [Google Scholar] [CrossRef]
- Anantharaman, R.; Hall, K.; Shah, V.; Edelman, A. Circuitscape in Julia: High Performance Connectivity Modelling to Support Conservation Decisions. arXiv 2019. [Google Scholar] [CrossRef]
- Thayn, J.B.; Sampeck, K.; Spaccapaniccia, M. Refining Hernando de Soto’s route using electric circuit theory and Circuitscape. Prof. Geogr. 2016, 68, 595–602. [Google Scholar] [CrossRef]
- Beyond Least Cost Paths: Circuit Theory, Maritime Mobility and Patterns of Urbanism in the Roman Adriatic-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0305440321002089 (accessed on 6 October 2022).
- Lohay, G.G.; Riggio, J.; Lobora, A.L.; Kissui, B.M.; Morrison, T.A. Wildlife movements and landscape connectivity in the Tarangire Ecosystem. In Tarangire: Human-Wildlife Coexistence in a Fragmented Ecosystem; Springer: Berlin/Heidelberg, Germany, 2022; pp. 255–276. [Google Scholar]
- Gray, M.E.; Dickson, B.G. A new model of landscape-scale fire connectivity applied to resource and fire management in the Sonoran Desert, USA. Ecol. Appl. 2015, 25, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Tahavori, M.; Kallesøe, C.S.; Leth, J.; Wisniewski, R. Modeling of water supply systems: Circuit theoretic approach. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), Singapore, 18–20 July 2012; pp. 1561–1566. [Google Scholar]
- Peeler, J.L.; Smithwick, E.A. Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (Bromus tectorum) invasion within lower montane forests? Divers. Distrib. 2018, 24, 1308–1320. [Google Scholar] [CrossRef]
- Howey, M.C. Multiple pathways across past landscapes: Circuit theory as a complementary geospatial method to least cost path for modeling past movement. J. Archaeol. Sci. 2011, 38, 2523–2535. [Google Scholar] [CrossRef]
- Wieringa, J.G.; Carstens, B.C.; Gibbs, H.L. Predicting migration routes for three species of migratory bats using species distribution models. PeerJ 2021, 9, e11177. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.; Hodgson, J.A.; Lawson, C.R.; Holloway, C.T.R.; Roy, D.B.; Brereton, T.; Thomas, C.D.; Wilson, R.J. Range expansion through fragmented landscapes under a variable climate. Ecol. Lett. 2013, 16, 921–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupas, S.; Le Ru, B.; Branca, A.; Faure, N.; Gigot, G.; Campagne, P.; Sezonlin, M.; Ndemah, R.; Ong’Amo, G.; Calatayud, P.-A. Phylogeography in continuous space: Coupling species distribution models and circuit theory to assess the effect of contiguous migration at different climatic periods on genetic differentiation in Busseola fusca (Lepidoptera: Noctuidae). Mol. Ecol. 2014, 23, 2313–2325. [Google Scholar] [CrossRef]
- Melles, S.J.; Chu, C.; Alofs, K.M.; Jackson, D.A. Potential spread of Great Lakes fishes given climate change and proposed dams: An approach using circuit theory to evaluate invasion risk. Landsc. Ecol. 2015, 30, 919–935. [Google Scholar] [CrossRef]
- Ahmadi, M.; Nezami Balouchi, B.; Jowkar, H.; Hemami, M.-R.; Fadakar, D.; Malakouti-Khah, S.; Ostrowski, S. Combining landscape suitability and habitat connectivity to conserve the last surviving population of cheetah in Asia. Divers. Distrib. 2017, 23, 592–603. [Google Scholar] [CrossRef] [Green Version]
- Kavhu, B.; Eric Mashimbye, Z.; Luvuno, L. Characterising social-ecological drivers of landuse/cover change in a complex transboundary basin using singular or ensemble machine learning. Remote Sens. Appl. Soc. Environ. 2022, 27, 100773. [Google Scholar] [CrossRef]
- Wolski, P.; Savenije, H.H.G.; Murray-Hudson, M.; Gumbricht, T. Modelling of the flooding in the Okavango Delta, Botswana, using a hybrid reservoir-GIS model. J. Hydrol. 2006, 331, 58–72. [Google Scholar] [CrossRef]
- Kgathi, D.L.; Ngwenya, B.N.; Wilk, J. Shocks and rural livelihoods in the Okavango Delta, Botswana. Dev. S. Afr. 2007, 24, 289–308. [Google Scholar] [CrossRef]
- Mendelsohn, J.; El Obeid, S. Okavango River: The Flow of a Lifeline; Struik: Cape Town, South Africa, 2004. [Google Scholar]
- Wilk, J.; Kniveton, D.; Andersson, L.; Layberry, R.; Todd, M.C.; Hughes, D.; Ringrose, S.; Vanderpost, C. Estimating rainfall and water balance over the Okavango River Basin for hydrological applications. J. Hydrol. 2006, 331, 18–29. [Google Scholar] [CrossRef]
- Kavhu, B.; Mashimbye, Z.E.; Luvuno, L. Climate-based regionalization and inclusion of spectral indices for enhancing transboundary land-use/cover classification using deep learning and machine learning. Remote Sens. 2021, 13, 5054. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble Methods in Machine Learning. In Multiple Classifier Systems; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F. biomod2: Ensemble platform for species distribution modeling. R Package Version 2013, 2, r560. [Google Scholar]
- Ghoddousi, A.; Bleyhl, B.; Sichau, C.; Ashayeri, D.; Moghadas, P.; Sepahvand, P.; Kh Hamidi, A.; Soofi, M.; Kuemmerle, T. Mapping connectivity and conflict risk to identify safe corridors for the Persian leopard. Landsc. Ecol. 2020, 35, 1809–1825. [Google Scholar] [CrossRef]
- Mateo-Sánchez, M.C.; Balkenhol, N.; Cushman, S.; Pérez, T.; Domínguez, A.; Saura, S. Estimating effective landscape distances and movement corridors: Comparison of habitat and genetic data. Ecosphere 2015, 6, art59. [Google Scholar] [CrossRef]
- Xie, P.; Yang, J.; Wang, H.; Liu, Y.; Liu, Y. A New method of simulating urban ventilation corridors using circuit theory. Sustain. Cities Soc. 2020, 59, 102162. [Google Scholar] [CrossRef]
- Lalechère, E.; Bergès, L. A Validation Procedure for ecological corridor Locations. Land 2021, 10, 1320. [Google Scholar] [CrossRef]
- Kamwi, J.M.; Cho, M.A.; Kaetsch, C.; Manda, S.O.; Graz, F.P.; Chirwa, P.W. Assessing the spatial drivers of land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Land 2018, 7, 131. [Google Scholar] [CrossRef] [Green Version]
- Brennan, A.; Beytell, P.; Aschenborn, O.; Du Preez, P.; Funston, P.J.; Hanssen, L.; Kilian, J.W.; Stuart-Hill, G.; Taylor, R.D.; Naidoo, R. Characterizing multispecies connectivity across a transfrontier conservation landscape. J. Appl. Ecol. 2020, 57, 1700–1710. [Google Scholar] [CrossRef]
- Kamusoko, C. Importance of remote sensing and land change modeling for urbanization studies. In Urban Development in Asia and Africa; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–10. [Google Scholar]
- Kafy, A.-A.; Naim, N.H.; Khan, M.H.H.; Islam, M.A.; Al Rakib, A.; Al-Faisal, A.; Sarker, M.H.S. Prediction of urban expansion and identifying its impacts on the degradation of agricultural land: A machine learning-based remote-sensing approach in Rajshahi, Bangladesh. In Re-Envisioning Remote Sensing Applications; CRC Press: Boca Raton, FL, USA, 2021; pp. 85–106. [Google Scholar]
- Jellason, N.P.; Robinson, E.J.; Chapman, A.S.; Neina, D.; Devenish, A.J.; Po, J.Y.; Adolph, B. A systematic review of drivers and constraints on agricultural expansion in sub-Saharan Africa. Land 2021, 10, 332. [Google Scholar] [CrossRef]
- Baqa, M.F.; Chen, F.; Lu, L.; Qureshi, S.; Tariq, A.; Wang, S.; Jing, L.; Hamza, S.; Li, Q. Monitoring and Modeling the Patterns and Trends of Urban Growth Using Urban Sprawl Matrix and CA-Markov Model: A Case Study of Karachi, Pakistan. Land 2021, 10, 700. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A.C. Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecol. Model. 2021, 455, 109610. [Google Scholar] [CrossRef]
- Woldesemayat, E.M.; Genovese, P.V. Monitoring urban expansion and urban green spaces change in addis ababa: Directional and zonal analysis integrated with landscape expansion index. Forests 2021, 12, 389. [Google Scholar] [CrossRef]
- Terfa, B.K.; Chen, N.; Liu, D.; Zhang, X.; Niyogi, D. Urban expansion in Ethiopia from 1987 to 2017: Characteristics, spatial patterns, and driving forces. Sustainability 2019, 11, 2973. [Google Scholar] [CrossRef] [Green Version]
- Monna, S.C. International Co-operation for the Management of the Okavango Basin and Delta. Integr. Wetl. Water Resour. Manag. 2000, 4, 107–112. [Google Scholar]
- Abebe, M.T.; Megento, T.L. The City of Addis Ababa from ‘Forest City’ to ‘Urban Heat Island’ Assessment of Urban Green Space Dynamics. J. Urban Environ. Eng. 2016, 10, 254–262. [Google Scholar] [CrossRef]
- Teferi, E.; Abraha, H. Urban heat island effect of Addis Ababa City: Implications of urban green spaces for climate change adaptation. In Climate Change Adaptation in Africa; Springer: Berlin/Heidelberg, Germany, 2017; pp. 539–552. [Google Scholar]
- Zewdie, M.; Worku, H.; Bantider, A. Temporal dynamics of the driving factors of urban landscape change of addis ababa during the past three decades. Environ. Manag. 2018, 61, 132–146. [Google Scholar] [CrossRef]
- Habibi, S.; Asadi, N. Causes, results and methods of controlling urban sprawl. Procedia Eng. 2011, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Sipe, N. Green and Open Space Planning for Urban Consolidation—A Review of the Literature and Best Practice; Griffith University: Brisbane, QLD, Australia, 2010. [Google Scholar]
- BenDor, T.K.; Metcalf, S.S.; Paich, M. The dynamics of brownfield redevelopment. Sustainability 2011, 3, 914–936. [Google Scholar] [CrossRef] [Green Version]
- Andersson, J. Land Cover Change in the Okavango River Basin: Historical Changes during the Angolan Civil War, Contributing Causes and Effects on Water Quality; Tema Vatten i Natur Och Samhälle: Linköping, Sweden, 2006; Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7152 (accessed on 17 July 2022).
- Reliefweb. Angola Has 1220 Land Mine-Affected Areas. 28 September 2019. Available online: https://reliefweb.int/report/angola/angola-has-1220-land-mine-affected-areas (accessed on 7 February 2022).
- Finckh, M.; Pröpper, M.; Autlwetse, B.; Roa, C.; De Cauwer, V.; Domptail, S.; Erb, C.; Espach, C.; Falk, T.; Fynn, R.; et al. The current status of the Okavango Basin. In The Future Okavango—Findings, Scenarios and Recommendations for Action. Research Project Final Synthesis Report 2010–2015; University of Hamburg: Hamburg, Germany, 2015; pp. 25–51. [Google Scholar]
- Deininger, K.; Byerlee, D. Rising Global Interest in Farmland: Can It Yield Sustainable and Equitable Benefits? World Bank Publications: Washington, DC, USA, 2011. [Google Scholar]
- Qiao, R.; Li, Y.; Cai, Y. Prediction of the Cultivated Land Demand Based on Logistic Equation—A Case of Zhejiang Province, China. Asian Agric. Res. 2009, 1, 49–52. [Google Scholar]
- Kgathi, D.L.; Kniveton, D.; Ringrose, S.; Turton, A.R.; Vanderpost, C.H.; Lundqvist, J.; Seely, M. The Okavango; a river supporting its people, environment and economic development. J. Hydrol. 2006, 331, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Baumann, M.; Kuemmerle, T.; Elbakidze, M.; Ozdogan, M.; Radeloff, V.C.; Keuler, N.S.; Prishchepov, A.V.; Kruhlov, I.; Hostert, P. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy 2011, 28, 552–562. [Google Scholar] [CrossRef]
- Woods, K.; Elliott, S. Direct seeding for forest restoration on abandoned agricultural land in northern Thailand. J. Trop. For. Sci. 2004, 16, 248–259. [Google Scholar]
- Magole, K.; Thapelo, L. The impact of extreme flooding of the okavango river on the livelihood of the molapo farming community of Tubu village, Ngamiland Sub-district, Botswana. Botsw. Notes Rec. 2005, 37, 125–137. [Google Scholar]
- Bangira, T. Mapping Surface Water in Complex and Heterogeneous Environments Using Remote Sensing; Stellenbosch University: Stellenbosch, South Africa, 2019. [Google Scholar]
- Brummett, R.E.; Lazard, J.; Moehl, J. African aquaculture: Realizing the potential. Food Policy 2008, 33, 371–385. [Google Scholar] [CrossRef]
- Foucat, V.A. Community-based ecotourism management moving towards sustainability, in Ventanilla, Oaxaca, Mexico. Ocean Coast. Manag. 2002, 45, 511–529. [Google Scholar] [CrossRef]
- Heinl, M. Fire regime and Vegetation Response in the Okavango Delta, Botswana; Technische Universität München: Munich, Germany, 2005. [Google Scholar]
- Forno, I.W.; Smith, P.A. Management of the Alien Weed, Salvinia molesta, in the wetlands of the Okavango, Botswana. In An International Perspective on Wetland Rehabilitation; Streever, W., Ed.; Springer: Dordrecht, The Netherlands, 1999; pp. 159–166. [Google Scholar]
- Ringrose, S.; Jellema, A.; Huntsman-Mapila, P.; Baker, L.; Brubaker, K. Use of remotely sensed data in the analysis of soil-vegetation changes along a drying gradient peripheral to the Okavango Delta, Botswana. Int. J. Remote Sens. 2005, 26, 4293–4319. [Google Scholar] [CrossRef]
- Mogotsi, K.; Nyangito, M.M.; Nyariki, D.M. The role of drought among agro-pastoral communities in a semi-arid environment: The case of Botswana. J. Arid Environ. 2013, 91, 38–44. [Google Scholar] [CrossRef]
- Gumbricht, T.; McCarthy, T.S.; McCarthy, J.; Roy, D.; Frost, P.E.; Wessels, K. Remote sensing to detect sub-surface peat fires and peat fire scars in the Okavango Delta, Botswana. S. Afr. J. Sci. 2002, 98, 351–358. [Google Scholar]
- Teshirogi, K.; Kanno, M.; Shinjo, H.; Uchida, S.; Tanaka, U. Distribution and dynamics of the Cynodon dactylon invasion to the cultivated fields of pearl millet in north-central Namibia. J. Arid Environ. 2022, 205, 104820. [Google Scholar] [CrossRef]
- Kingston, D.G.; Mager, S.M.; Loft, J.; Underwood, G. An upstream–downstream/observation–model approach to quantify the human influence on drought. Hydrol. Sci. J. 2021, 66, 226–238. [Google Scholar] [CrossRef]
- Ramberg, L.; Hancock, P.; Lindholm, M.; Meyer, T.; Ringrose, S.; Sliva, J.; Van As, J.; Vander Post, C. Species diversity of the Okavango delta, Botswana. Aquat. Sci. 2006, 68, 310–337. [Google Scholar] [CrossRef]
- Gupta, R.; Sharma, L.K. Efficacy of Spatial Land Change Modeler as a forecasting indicator for anthropogenic change dynamics over five decades: A case study of Shoolpaneshwar Wildlife Sanctuary, Gujarat, India. Ecol. Indic. 2020, 112, 106171. [Google Scholar] [CrossRef]
- Thonfeld, F.; Steinbach, S.; Muro, J.; Hentze, K.; Games, I.; Näschen, K.; Kauzeni, P.F. The impact of anthropogenic land use change on the protected areas of the Kilombero catchment, Tanzania. ISPRS J. Photogramm. Remote Sens. 2020, 168, 41–55. [Google Scholar] [CrossRef]
- Tian, Y.; Yin, K.; Lu, D.; Hua, L.; Zhao, Q.; Wen, M. Examining Land Use and Land Cover Spatiotemporal Change and Driving Forces in Beijing from 1978 to 2010. Remote Sens. 2014, 6, 10593–10611. [Google Scholar] [CrossRef] [Green Version]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Shiferaw, H.; Alamirew, T.; Kassawmar, T.; Zeleke, G. Evaluating ecosystems services values due to land use transformation in the Gojeb watershed, Southwest Ethiopia. Environ. Syst. Res. 2021, 10, 22. [Google Scholar] [CrossRef]
- Yuan, Z.; Xu, J.; Wang, Y.; Yan, B. Analyzing the influence of land use/land cover change on landscape pattern and ecosystem services in the Poyang Lake Region, China. Environ. Sci. Pollut. Res. 2021, 28, 27193–27206. [Google Scholar] [CrossRef]
Category | Transition ID | Transition | Number of Centroid Points |
---|---|---|---|
A | A1 | Water to Cultivated | 299 |
A2 | Woodland to built-up | 508 | |
A3 | Woodland to cultivated | 23,972 | |
A4 | Grassland to built-up | 142 | |
A5 | Grassland to cultivated | 7720 | |
A6 | Shrubland to cultivated | 453 | |
A7 | Wetland to cultivated | 56 | |
B | B1 | Cultivated to built-up | 1909 |
B2 | Cultivated to woodland | 236 | |
B3 | Cultivated to grassland | 4816 | |
B4 | Cultivated to shrubland | 463 | |
C | C1 | Water to woodland | 438 |
C2 | Water to grassland | 70 | |
C3 | Woodland to grassland | 66,658 | |
C4 | Woodland to shrubland | 12,784 | |
C5 | Grassland to water | 1042 | |
C6 | Grassland to shrubland | 34,238 | |
C7 | Grassland to wetland | 21 | |
C8 | Shrubland to woodland | 10,037 | |
C9 | Shrubland to grassland | 34,654 | |
C10 | Shrubland to wetland | 18 | |
C11 | Wetland to woodland | 72 | |
C12 | Wetland to grassland | 56 | |
C13 | Wetland to shrubland | 46 |
Electrical Terminology | LULC Change Studies Explanation When Using CT Modelling |
---|---|
Resistance—the opposition that resistors offer to the flow of electrical current | The opposition that landscape offers to the spread of LULC change |
Conductance—inverse of resistance, which describes the resistance’s ability to pass current | Synonymous with LULC change permeability |
Current—the rate of flow of electric charge past a node or resistance | The rate of LULC change past a landscape |
Voltage—the difference in electric potential between two nodes | The probability of LULC change leaving one location spreading to a certain location before another location |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavhu, B.; Mashimbye, Z.E.; Luvuno, L. Detecting Connectivity and Spread Pathways of Land Use/Cover Change in a Transboundary Basin Based on the Circuit Theory. Geomatics 2022, 2, 518-539. https://doi.org/10.3390/geomatics2040028
Kavhu B, Mashimbye ZE, Luvuno L. Detecting Connectivity and Spread Pathways of Land Use/Cover Change in a Transboundary Basin Based on the Circuit Theory. Geomatics. 2022; 2(4):518-539. https://doi.org/10.3390/geomatics2040028
Chicago/Turabian StyleKavhu, Blessing, Zama Eric Mashimbye, and Linda Luvuno. 2022. "Detecting Connectivity and Spread Pathways of Land Use/Cover Change in a Transboundary Basin Based on the Circuit Theory" Geomatics 2, no. 4: 518-539. https://doi.org/10.3390/geomatics2040028
APA StyleKavhu, B., Mashimbye, Z. E., & Luvuno, L. (2022). Detecting Connectivity and Spread Pathways of Land Use/Cover Change in a Transboundary Basin Based on the Circuit Theory. Geomatics, 2(4), 518-539. https://doi.org/10.3390/geomatics2040028