A Mapping Review of Existing Tools to Assess Physical Qualities of Manual Wheelchair Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Search Strategy
2.3. Review Process and Eligibility Criteria
2.4. Data Extraction
2.5. Data Synthesis
2.6. Measurement Properties
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LTPA | Leisure-time physical activity |
MWC | Manual wheelchair |
PRISMA | Preferred reporting items for systematic reviews and meta-analyses |
References
- WHO. Global Status Report on Physical Activity 2022. 2022. Available online: https://www.who.int/teams/health-promotion/physical-activity/global-status-report-on-physical-activity-2022 (accessed on 25 January 2025).
- Üstün, T.; Kostanjsek, N.; Chatterji, S.; Rehm, J. Measuring Health and Disability: Manual for WHO Disability Assessment Schedule WHODAS 2.0; World Health Organization: Geneva, Switzerland, 2010; p. 90.
- Jacobs, P.L.; Nash, M.S. Modes, benefits, and risks of voluntary and electrically induced exercise in persons with spinal cord injury. J. Spinal Cord Med. 2001, 24, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Warms, C.A.; Whitney, J.A.D.; Belza, B. Measurement and description of physical activity in adult manual wheelchair users. Disabil. Health J. 2008, 1, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Van Velzen, J.M.; De Groot, S.; Post, M.W.M.; Slootman, J.R.; Van Bennekom, C.A.M.; Van Der Woude, L.H.V. Return to work after spinal cord injury: Is it related to wheelchair capacity at discharge from clinical rehabilitation? Am. J. Phys. Med. Rehabil. 2009, 88, 47–56. [Google Scholar] [CrossRef]
- Buchholz, A.C.; Ginis, K.A.M.; Bray, S.R. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl. Physiol. Nutr. Metab. 2009, 34, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Martin Ginis, K.A.; Van Der Scheer, J.W.; Latimer-Cheung, A.E. Evidence-based scientific exercise guidelines for adults with spinal cord injury: An update and a new guideline. Spinal Cord 2018, 56, 308–321. [Google Scholar] [CrossRef]
- García, T.P.; González, B.G.; Rivero, L.N.; Loureiro, J.P.; Villoria, E.D.; Sierra, A.P. Exploring the Psychosocial Impact of Wheelchair and Contextual Factors on Quality of Life of People with Neuromuscular Disorders. Assist. Technol. 2015, 27, 246–256. [Google Scholar] [CrossRef]
- Sá, K.; Costa E Silva, A.; Gorla, J.; Silva, A.; Magno E Silva, M. Injuries in Wheelchair Basketball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5869. [Google Scholar] [CrossRef] [PubMed]
- Martin Ginis, K.A.; Latimer, A.E.; McKechnie, K. Using exercise to enhance subjective well-being among people with spinal cord injury: The mediating influences of stress and pain. Rehabil. Psychol. 2003, 48, 157–164. [Google Scholar] [CrossRef]
- Kennedy, P.; Rogers, B.A. Anxiety and depression after spinal cord injury: A longitudinal analysis. Arch. Phys. Med. Rehabil. 2000, 81, 932–937. [Google Scholar] [CrossRef]
- Williams, T.L.; Smith, B.; Papathomas, A. The barriers, benefits and facilitators of leisure time physical activity among people with spinal cord injury: A meta-synthesis of qualitative findings. Health Psychol. Rev. 2014, 8, 404–425. [Google Scholar] [CrossRef]
- Farì, G.; Megna, M.; Fiore, P.; Ranieri, M.; Marvulli, R.; Bonavolontà, V.; Bianchi, F.P.; Puntillo, F.; Varrassi, G.; Reis, V.M. Real-Time Muscle Activity and Joint Range of Motion Monitor to Improve Shoulder Pain Rehabilitation in Wheelchair Basketball Players: A Non-Randomized Clinical Study. Clin. Pract. 2022, 12, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Haubert, L.L.; Mulroy, S.J.; Eberly, V.J.; Gronley, J.A.K.; Hatchett, P.E.; Conners, S.G. Shoulder Pain Prevention Program for Manual Wheelchair Users with Paraplegia: A Randomized Clinical Trial. Top. Spinal Cord Inj. Rehabil. 2021, 27, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Giacobbi, P.R.; Stancil, M.; Hardin, B.; Bryant, L. Physical activity and quality of life experienced by highly active individuals with physical disabilities. Adapt. Phys. Act. Q. 2008, 25, 189–207. [Google Scholar] [CrossRef]
- Carraro, E.; Casiraghi, J.L.; Bobba, B.; Lizio, A.; Cardella, C.; Albamonte, E.; Lunetta, C.; Pozzi, S.; Sansone, V.A. Wheelchair hockey improves quality of life in people with neuromuscular disease. PM R 2022, 14, 1446–1453. [Google Scholar] [CrossRef]
- Griffin, S.A.; Perera, N.K.P.; Murray, A.; Hartley, C.; Fawkner, S.G.; Kemp, S.P.T.; Stokes, K.A.; Kelly, P. The relationships between rugby union, and health and well-being: A scoping review. Br. J. Sports Med. 2021, 55, 319–326. [Google Scholar] [CrossRef]
- Caspersen, J.; Powell, E.; Christenson, M. Physical Activity, Exercise, and Physical Fitness: Definitions and Distinctions for Health-Related Research CARL. Notes Queries 1958, 100, 125–131. [Google Scholar]
- Ginis, K.A.M.; Latimer, A.E.; Arbour-Nicitopoulos, K.P.; Buchholz, A.C.; Bray, S.R.; Craven, B.C.; Hayes, K.C.; Hicks, A.L.; McColl, M.A.; Potter, P.J.; et al. Leisure Time Physical Activity in a Population-Based Sample of People with Spinal Cord Injury Part I: Demographic and Injury-Related Correlates. Arch. Phys. Med. Rehabil. 2010, 91, 722–728. [Google Scholar] [CrossRef]
- Best, K. Manual wheelchair users: Understanding participation and skill development. J. Chem. Inf. Model. 2018, 53, 1689–1699. [Google Scholar]
- Martin Ginis, K.A.; Ma, J.K.; Latimer-Cheung, A.E.; Rimmer, J.H. A systematic review of review articles addressing factors related to physical activity participation among children and adults with physical disabilities. Health Psychol. Rev. 2016, 10, 478–494. [Google Scholar] [CrossRef]
- Hansen, R.K.; Larsen, R.G.; Laessoe, U.; Samani, A.; Cowan, R.E. Physical Activity Barriers in Danish Manual Wheelchair Users: A Cross-sectional Study. Arch. Phys. Med. Rehabil. 2021, 102, 687–693. [Google Scholar] [CrossRef]
- FWelage, N.; Liu, K.P.Y. Disability and Rehabilitation: Assistive Technology Wheelchair accessibility of public buildings: A review of the literature. Disabil. Rehabilitation Assist. Technol. 2011, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.W.; Wong, S.W.L.; Lo, F.S.F.; So, R.C.H.; Chan, D.F.Y. Study protocol: A randomized controlled trial study on the effect of a game-based exercise training program on promoting physical fitness and mental health in children with autism spectrum disorder. BMC Psychiatry 2018, 18, 56. [Google Scholar] [CrossRef] [PubMed]
- Best, K.L.; Bourassa, S.; Sweet, S.N. Expert consensus for a digital peer-led approach with spinal cord injury who use manual wheelchairs Expert consensus for a digital peer-led approach to improving physical activity among individuals with spinal cord injury who use manual wheelchairs. J. Spinal Cord Med. 2023, 46, 53–61. [Google Scholar] [CrossRef]
- Calder, A.M.; Physiotherapy, B.H.S.; Ct, P.G.C. Measurement properties of instruments that assess inclusive access to fitness and recreational sports centers: A systematic review. Disabil. Health J. 2014, 7, 26–35. [Google Scholar] [CrossRef]
- Teixeira, P.J.; Carraça, E.V.; Markland, D.; Silva, M.N.; Ryan, R.M. Exercise, physical activity, and self-determination theory: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 1. [Google Scholar] [CrossRef]
- Bentzen, M.; Malmquist, L.K. Differences in participation across physical activity contexts between adolescents with and without disability over three years: A self-determination theory perspective. Disabil. Rehabil. 2022, 44, 1660–1668. [Google Scholar] [CrossRef]
- Hutzler, Y.; Chacham-Guber, A.; Reiter, S. Psychosocial effects of reverse-integrated basketball activity compared to separate and no physical activity in young people with physical disability. Res. Dev. Disabil. 2013, 34, 579–587. [Google Scholar] [CrossRef]
- Reedman, S.E.; Boyd, R.N.; Ziviani, J.; Elliott, C.; Ware, R.S.; Sakzewski, L. Participation predictors for leisure-time physical activity intervention in children with cerebral palsy. Dev. Med. Child Neurol. 2021, 63, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Kirby, R.L.; Swuste, J.; Dupuis, D.J. The Wheelchair Skills Test: A Pilot Study of a New Outcome Measure. YAPMR 2002, 83, 10–18. [Google Scholar] [CrossRef]
- Yanci, J.; Granados, C.; Otero, M. Sprint, agility, strength and endurance capacity in wheelchair basketball players. Biol. Sport 2015, 32, 71–78. [Google Scholar] [CrossRef]
- Goosey-tolfrey, V. Supporting the paralympic athlete: Focus on wheeled sports. Disabil. Rehabil. 2010, 32, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Weineck, J. Biologie Du Sport; Translated from the German by Robert Handschuh; ©1992; Editions Vigot: Paris, France, 1998. [Google Scholar]
- Fleichmann, E.A. The Structure and Measurement of Physical Fitness; Prentice Hall: Englewood Cliffs, NJ, USA; American Institute for Research: Washington, DC, USA, 1964. [Google Scholar]
- Keyser, R.E.; Rasch, E.K.; Finley, M.; Rodgers, M.M. Improved upper-body endurance following a 12-week home exercise program for manual wheelchair users. J. Rehabil. Res. Dev. 2003, 40, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, M.; Guerra, E.; Di Giacinto, B.; Di Cesare, A.; Castellano, V.; Bhambhani, Y. Field evaluation of paralympic athletes in selected sports: Implications for training. Med. Sci. Sports Exerc. 2010, 42, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Villiere, A.; Mason, B.; Parmar, N.; Maguire, N.; Holmes, D.; Turner, A. The physical characteristics underpinning performance of wheelchair fencing athletes: A Delphi study of Paralympic coaches. J. Sports Sci. 2021, 39, 2006–2014. [Google Scholar] [CrossRef]
- Sánchez-Pay, A.; Martínez-Gallego, R.; Crespo, M.; Sanz-Rivas, D. Key physical factors in the serve velocity of male professional wheelchair tennis players. Int. J. Environ. Res. Public Health 2021, 18, 1944. [Google Scholar] [CrossRef]
- Petrigna, L.; Pajaujiene, S.; Musumeci, G. Physical fitness assessment in wheelchair basketball: A mini-review. Front. Sport Act. Living 2022, 4, 1035570. [Google Scholar] [CrossRef]
- Council of Europe. Testing Physical Fitness: Eurofit. Education 1983, 1–75, Provisional Handbook 1–18. Available online: https://bitworks-engineering.co.uk/Welcome.html (accessed on 25 January 2025).
- Ortega, F.B.; Cadenas-Sánchez, C.; Sánchez-Delgado, G.; Mora-González, J.; Martínez-Téllez, B.; Artero, E.G.; Castro-Piñero, J.; Labayen, I.; Chillón, P.; Löf, M.; et al. Systematic Review and Proposal of a Field-Based Physical Fitness-Test Battery in Preschool Children: The PREFIT Battery. Sports Med. 2015, 45, 533–555. [Google Scholar] [CrossRef]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- James, K.L.; Randall, N.P.; Haddaway, N.R. A methodology for systematic mapping in environmental sciences. Environ. Evid. 2016, 5, 7. [Google Scholar] [CrossRef]
- Marcolin, G.; Petrone, N.; Benazzato, M. Personalized tests in paralympic athletes: Aerobic and anaerobic performance profile of elite wheelchair rugby players. J. Pers. Med. 2020, 10, 118. [Google Scholar] [CrossRef]
- Iturricastillo, A.; Granados, C.; Reina, R.; Sarabia, J.M.; Romarate, A.; Yanci, J. Velocity and power–load association of bench-press exercise in wheelchair basketball players and their relationships with field-test performance. Int. J. Sports Physiol. Perform. 2019, 14, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Demir, G.; Bulut, N.; Yılmaz, Ö.; Karaduman, A.; Alemdaroğlu-Gürbüz, İ. Manual ability and upper limb performance in nonambulatory stage of Duchenne muscular dystrophy. Arch. Pediatr. 2020, 27, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.S.; Altmann, V.C.; Hutchinson, M.J.; Petrone, N.; Bettella, F.; Goosey-Tolfrey, V.L. Optimising classification of proximal arm strength impairment in wheelchair rugby: A proof of concept study. J. Sports Sci. 2021, 39 (Suppl. S1), 132–139. [Google Scholar] [CrossRef] [PubMed]
- Turbanski, D.; Schmidtbleicher, D. Effects of heavy resistance training on strength and power in upper extremities in wheelchair athletes. J. Strength Cond. Res. 2010, 24, 8–16. [Google Scholar] [CrossRef]
- Gil, S.M.; Yanci, J.; Otero, M. The Functional Classification and Field Test Performance in Wheelchair Basketball Players. J. Hum. Kinet. 2015, 46, 219–230. [Google Scholar] [CrossRef]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Physique and performance of young wheelchair basketball players in relation with classification. PLoS ONE 2015, 10, e0143621. [Google Scholar] [CrossRef]
- Nooijen, C.F.J.; De Groot, S.; Postma, K. A more active lifestyle in persons with a recent spinal cord injury benefits physical fitness and health. Spinal Cord 2012, 50, 320–323. [Google Scholar] [CrossRef]
- Marszałek, J.; Kosmol, A.; Morgulec-Adamowicz, N. Laboratory and non-laboratory assessment of anaerobic performance of elite male wheelchair basketball athletes. Front. Psychol. 2019, 10, 514. [Google Scholar] [CrossRef]
- Callahan, M.K.; Cowan, R.E. Relationship of fitness and wheelchair mobility with encounters, avoidances, and perception of environmental barriers among manual wheelchair users with spinal cord injury. Arch. Phys. Med. Rehabil. 2018, 99, 2007–2014.e3. [Google Scholar] [CrossRef]
- De Groot, S.; Van Der Scheer, J.W.; Bakkum, A.J.T. Wheelchair-specific fitness of persons with a long-term spinal cord injury: Cross-sectional study on effects of time since injury and physical activity level. Disabil. Rehabil. 2016, 38, 1180–1186. [Google Scholar] [CrossRef]
- Connick, M.J.; Beckman, E.; Vanlandewijck, Y.; Malone, L.A.; Blomqvist, S.; Tweedy, S.M. Cluster analysis of novel isometric strength measures produces a valid and evidence-based classification structure for wheelchair track racing. Br. J. Sports Med. 2018, 52, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, T.; Vegter, R.J.K.; van der Slikke, R.M.A.; Hoekstra, A.E.; van der Woude, L.H.V.; De Groot, S. Wheelchair mobility performance of elite wheelchair tennis players during four field tests: Inter-trial reliability and construct validity. PLoS ONE 2019, 14, e0217514. [Google Scholar] [CrossRef] [PubMed]
- Van Der Scheer, J.W.; De Groot, S.; Tepper, M. Wheelchair-specific fitness of inactive people with long-term spinalcord injury. J. Rehabil. Med. 2015, 47, 330–337. [Google Scholar] [CrossRef]
- Tachibana, K.; Mutsuzaki, H.; Shimizu, Y.; Doi, T.; Hotta, K.; Wadano, Y. Influence of functional classification on skill tests in elite female wheelchair basketball athletes. Medicina 2019, 55, 740. [Google Scholar] [CrossRef]
- Loturco, I.; McGuigan, M.R.; Reis, V.P. Relationship between power output and speed-related performance in brazilian wheelchair basketball players. Adapt. Phys. Act. Q. 2020, 37, 508–517. [Google Scholar] [CrossRef]
- García-Fresneda, A.; Carmona, G.; Padullés, X. Initial maximum push-rim propulsion and sprint performance in elite wheelchair rugby players. J. Strength Cond. Res. 2019, 33, 57–865. [Google Scholar] [CrossRef]
- Ferreira, S.A.; De Souza, W.C.; Do Nascimento, M.A. Características morfológicas, desempenho de força e de potência anaeróbia em jogadores de basquetebol em cadeira de rodas. Rev. Bras. Cineantropom. Desempenho Hum. 2017, 19, 343–353. [Google Scholar] [CrossRef]
- Stewart, M.W.; Melton-Rogers, S.L.; Morrison, S.; Figoni, S.F. The measurement properties of fitness measures and health status for persons with spinal cord injuries. Arch. Phys. Med. Rehabil. 2000, 81, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.L.; Johnson, B.; Somarriba, G.A.; Carter, A.B. Reliability of upper extremity anaerobic power assessment in persons with tetraplegia. J. Spinal Cord Med. 2005, 28, 109–113. [Google Scholar] [CrossRef]
- Zwinkels, M.; Verschuren, O.; De Groot, J.F. Effects of high-intensity interval training on fitness and health in youth with physical disabilities. Pediatr. Phys. Ther. 2019, 31, 84–93. [Google Scholar] [CrossRef]
- Kilkens, O.J.; Dallmeijer, A.J.; Nene, A.V.; Post, M.W.; Van Der Woude, L.H. The longitudinal relation between physical capacity and wheelchair skill performance during inpatient rehabilitation of people with spinal cord injury. Arch. Phys. Med. Rehabil. 2005, 86, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Goosey-Tolfrey, V.L. Physiological profiles of elite wheelchair basketball players in preparation for the 2000 Paralympic games. Adapt. Phys. Act. Q. 2005, 22, 57–66. [Google Scholar] [CrossRef]
- Kilkens, O.J.; Dallmeijer, A.J.; De Witte, L.P.; Van Der Woude, L.H.; Post, M.W. The wheelchair circuit: Construct validity and responsiveness of a test to assess manual wheelchair mobility in persons with spinal cord injury. Arch. Phys. Med. Rehabil. 2004, 85, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, S.; Valent, L.; Gobets, D.; van der Woude, L.; de Groot, S. Effects of four-month handbike training under free-living conditions on physical fitness and health in wheelchair users. Disabil. Rehabil. 2017, 39, 1581–1588. [Google Scholar] [CrossRef]
- Van Den Berg, R.; De Groot, S.; Swart, K.M.A.; Van Der Woude, L.H.V. Physical capacity after 7 weeks of low-intensity wheelchair training. Disabil. Rehabil. 2010, 32, 1717–1721. [Google Scholar] [CrossRef]
- Astier, M.; Watelain, E.; Borel, B.; Weissland, T.; Vallier, J.M.; Faupin, A. Perception de l’effort et performances de deux modes de propulsion lors d’un test de terrain effectué par des joueurs de basketball en fauteuil roulant. Sci. Sport 2016, 31, e181–e188. [Google Scholar] [CrossRef]
- Weissland, T.; Leprêtre, P.-M.; Bruere, S.; Troadec, G.; Terrefond, M. Prediction of peak oxygen consumption from the multistage field test in elite wheelchair rugby players. Ann. Phys. Rehabil. Med. 2016, 59, e54. [Google Scholar] [CrossRef]
- Leicht, C.A.; Griggs, K.E.; Lavin, J.; Tolfrey, K.; Goosey-Tolfrey, V.L. Blood lactate and ventilatory thresholds in wheelchair athletes with tetraplegia and paraplegia. Eur. J. Appl. Physiol. 2014, 114, 1635–1643. [Google Scholar] [CrossRef]
- Tordi, N.; Dugue, B.; Klupzinski, D.; Rasseneur, L.; Rouillon, J.D.; Lonsdorfer, J. Interval training program on a wheelchair ergometer for paraplegic subjects. Spinal Cord 2001, 39, 532–537. [Google Scholar] [CrossRef]
- Gee, C.M.; Williams, A.M.; Sheel, A.W.; Eves, N.D.; West, C.R. Respiratory muscle training in athletes with cervical spinal cord injury: Effects on cardiopulmonary function and exercise capacity. J. Physiol. 2019, 597, 3673–3685. [Google Scholar] [CrossRef]
- Vergés, S.; Flore, P.; Nantermoz, G.; Lafaix, P.A.; Wuyam, B. Respiratory muscle training in athletes with spinal cord injury. Int. J. Sports Med. 2009, 30, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Hol, A.T.; Eng, J.J.; Miller, W.C.; Sproule, S.; Krassioukov, A.V. Reliability and Validity of the Six-Minute Arm Test for the Evaluation of Cardiovascular Fitness in People with Spinal Cord Injury. Arch. Phys. Med. Rehabil. 2007, 88, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.G.; Williams, C.; Lakomy, H.K.A. Physiological responses of endurance-trained male wheelchair athletes to a 10-kilometer treadmill time trial. Adapt. Phys. Act. Q. 2002, 19, 496–508. [Google Scholar] [CrossRef] [PubMed]
- West, C.R.; Romer, L.M.; Krassioukov, A. Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med. Sci. Sports Exerc. 2013, 45, 261–267. [Google Scholar] [CrossRef]
- Nieshoff, E.C.; Birk, T.J.; Birk, C.A.; Hinderer, S.R.; Yavuzer, G. Double-blinded, placebo-controlled trial of midodrine for exercise performance enhancement in tetraplegia: A pilot study. J. Spinal Cord Med. 2004, 27, 219–225. [Google Scholar] [CrossRef]
- Croft, L.; Dybrus, S.; Lenton, J.; Tolfrey-Goosey, V. A comparison of the physiological demands of wheelchair basketball and wheelchair tennis. Int. J. Sports Physiol. Perform. 2010, 5, 301–315. [Google Scholar] [CrossRef]
- Sierra-Díaz, M.J.; González-Víllora, S.; Pastor-Vicedo, J.C.; López-Sánchez, G.F. Can We Motivate Students to Practice Physical Activities and Sports Through Models-Based Practice? A Systematic Review and Meta-Analysis of Psychosocial Factors Related to Physical Education. Front. Psychol. 2019, 10, 2115. [Google Scholar] [CrossRef]
- Gavel, E.H.; Macrae, H.Z.; Goosey-Tolfrey, V.L.; Logan-Sprenger, H.M. Reliability of anaerobic and aerobic mobility performance tests used in wheelchair rugby, wheelchair basketball and wheelchair tennis: A systematic review. J. Sports Sci. 2023, 41, 1146–1170. [Google Scholar] [CrossRef]
- Cho, E.H.; Choi, B.A.; Seo, Y. Development of Field Tests for Cardiovascular Fitness Assessment in Wheelchair. Healthcare 2024, 12, 580. [Google Scholar] [CrossRef]
- Cowan, R.E.; Callahan, M.K.; Nash, M.S. The 6-min push test is reliable and predicts low fitness in spinal cord injury. Med. Sci. Sports Exerc. 2012, 44, 1993–2000. [Google Scholar] [CrossRef]
- Soumyashree, S.; Kaur, J. Effect of inspiratory muscle training (IMT) on aerobic capacity, respiratory muscle strength and rate of perceived exertion in paraplegics. J. Spinal Cord Med. 2020, 43, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Shiba, S.; Okawa, H.; Uenishi, H. Longitudinal changes in physical capacity over 20 years in athletes with spinal cord injury. Arch. Phys. Med. Rehabil. 2010, 91, 1262–1266. [Google Scholar] [CrossRef]
- Van Der Westhuizen, L.; Mothabeng, D.J.; Nkwenika, T.M. The relationship between physical fitness and community participation in people with spinal cord injury. S. Afr. J. Physiother. 2017, 73, 354. [Google Scholar] [CrossRef]
- Lenton, J.P.; Fowler, N.E.; Van Der Woude, L.; Goosey-Tolfrey, V.L. Wheelchair propulsion: Effects of experience and push strategy on efficiency and perceived exertion. Appl. Physiol. Nutr. Metab. 2008, 33, 870–879. [Google Scholar] [CrossRef]
- Carty, A.; McCormack, K.; Coughlan, G.F.; Crowe, L.; Caulfield, B. Increased aerobic fitness after neuromuscular electrical stimulation training in adults with spinal cord injury. Arch. Phys. Med. Rehabil. 2012, 93, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.M.; Li, C.H.; Huang, H.T.; Cheng, Y.Y. Feasible modalities and long-term effects of elastic band exercises in nursing home older adults in wheelchairs: A cluster randomized controlled trial. Int. J. Nurs. Stud. 2016, 55, 4–14. [Google Scholar] [CrossRef]
- Külünkoǧlu, B.; Akkubak, Y.; Ergun, N. The profile of upper extremity Muscular strength in female wheelchair basketball players: A pilot study. J. Sports Med. Phys. Fitness 2018, 58, 606–611. [Google Scholar] [CrossRef] [PubMed]
- Goosey-Tolfrey, V.L.; Groot SDe Tolfrey, K.; Paulson, T.A.W. Criterion Validity of a Field-Based Assessment of Aerobic Capacity in Wheelchair Rugby Athletes. Int. J. Sports Physiol. Perform. 2021, 16, 1341–1346. [Google Scholar] [CrossRef]
- Pradon, D.; Pinsault, N.; Zory, R.; Routhier, F. Could mobilty performance measures be used to evaluate wheelchair skills? J. Rehabil. Med. 2012, 44, 276–279. [Google Scholar] [CrossRef]
- Molik, B.; Laskin, J.J.; Kosmol, A.; Marszałek, J.; Morgulec-Adamowicz, N.; Frick, T. Relationships between anaerobic performance, field tests, and functional level of elite female wheelchair basketball athletes. Hum. Mov. 2013, 14, 366–371. [Google Scholar] [CrossRef]
- Vanlandewijck, Y.C.; Van De Vliet, P.; Verellen, J.; Theisen, D. Determinants of shuttle run performance in the prediction of peak VO2 in wheelchair users. Disabil. Rehabil. 2006, 28, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Cavedon, V.; Zancanaro, C.; Milanese, C. Anthropometry, body composition, and performance in sport-specific field test in female wheelchair basketball players. Front. Physiol. 2018, 9, 568. [Google Scholar] [CrossRef]
- Soylu, Ç.; Yıldırım, N.Ü.; Akalan, C.; Akınoğlu, B.; Kocahan, T. The Relationship Between Athletic Performance and Physiological Characteristics in Wheelchair Basketball Athletes. Res. Q. Exerc. Sport 2020, 92, 639–650. [Google Scholar] [CrossRef]
- Bourassa, J.; Routhier, F.; Gagnon, C. Wheelchair mobility, motor performance and participation of adult wheelchair users with ARSACS: A cross-sectional study. Disabil. Rehabil. Assist. Technol. 2020, 18, 378–386. [Google Scholar] [CrossRef]
- Villacieros, J.; Pérez-Tejero, J.; Garrido, G.; Grams, L.; López-Illescas, Á.; Ferro, A. Relationship between sprint velocity and peak moment at shoulder and elbow in elite wheelchair basketball players. Int. J. Environ. Res. Public Health 2020, 17, 6989. [Google Scholar] [CrossRef] [PubMed]
- Riquelme, I.; Arnould, C.; Hatem, S.M.; Bleyenheuft, Y. The Two-Arm Coordination Test: Maturation of Bimanual Coordination in Typically Developing Children and Deficits in Children with Unilateral Cerebral Palsy. Dev. Neurorehabil. 2019, 22, 312–320. [Google Scholar] [CrossRef]
- Van Koppenhagen, C.F.; Post, M.; De Groot, S. Longitudinal relationship between wheelchair exercise capacity and life satisfaction in patients with spinal cord injury: A cohort study in the Netherlands. J. Spinal Cord Med. 2014, 37, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Suner-keklik, S.; Çobanoğlu, G.; Savas, S.; Seven, B.; Kafa, N.; Güzel, N.A. The Comparison of flexibility and isokinetic shoulder strength in wheelchair and able-bodied basketball players. Turk. Klin. J. Sport Sci. 2020, 12, 349–357. [Google Scholar] [CrossRef]
- Wang, Y.T.; Chen, S.; Limroongreungrat, W.; Change, L.S. Contributions of selected fundamental factors to wheelchair basketball performance. Med. Sci. Sports Exerc. 2005, 37, 130–137. [Google Scholar] [CrossRef]
- Takeo, A.; Okazaki, H.; Takeda, K.; Nakagawa, Y.; Sonoda, S. A new system to measure the trunk angle and pelvis angle during wheelchair propulsion. Technol. Health Care 2023, 31, 517–525. [Google Scholar] [CrossRef]
- Gabison, S.; Verrier, M.C.; Nadeau, S.; Gagnon, D.H.; Roy, A.; Flett, H.M. Trunk strength and function using the multidirectional reach distance in individuals with non-traumatic spinal cord injury. J. Spinal Cord Med. 2014, 37, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Hilgenkamp, T.I.M.; van Wijck, R.; Evenhuis, H.M. Feasibility of eight physical fitness tests in 1,050 older adults with intellectual disability: Results of the healthy ageing with intellectual disabilities study. Intellect. Dev. Disabil. 2013, 51, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhang, X.; Zhao, Y.C. Wheelchair Tai Chi on balance control and quality life among survivors of spinal cord injuries: A randomized controlled trial. Complement. Ther. Clin. Pract. 2018, 33, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Petrofsky, J.S. A device for the evaluation of sitting and reach balance in people in wheelchairs and standing. J. Med. Eng. Technol. 2006, 30, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.D.S.; Krishnan, C.; Alonso, A.C.; Greve, J.M.D.A. Trunk Function Correlates Positively with Wheelchair Basketball Player Classification. Am. J. Phys. Med. Rehabil. 2017, 96, 101–108. [Google Scholar] [CrossRef]
- de Freitas, G.R.; Abou, L.; de Lima, A.; Rice, L.A.; Ilha, J. Measurement Properties of Clinical Instruments for Assessing Manual Wheelchair Mobility in Individuals with Spinal Cord Injury: Systematic Review. Arch. Phys. Med. Rehabil. 2023, 104, 656–672. [Google Scholar] [CrossRef]
- Gagnon, B.; Vincent, C.; Noreau, L. Adaptation of a seated postural control measure for adult wheelchair users. Disabil. Rehabil. 2005, 27, 951–959. [Google Scholar] [CrossRef]
- Davis, G.M.; Kofsky, P.R.; Kelsey, J.C.; Shepard, R.J. Review Article: Cardiorespiratory fitness and muscular strength of wheelchair users. CMAJ 1981, 125, 1317–1323. [Google Scholar]
- Uzun, S.; Pourmoghaddam, A.; Hieronymus, M.; Thrasher, T.A. Evaluation of muscle fatigue of wheelchair basketball players with spinal cord injury using recurrence quantification analysis of surface EMG. Eur. J. Appl. Physiol. 2012, 112, 3847–3857. [Google Scholar] [CrossRef]
- Herzog, T.; Swanenburg, J. Effect of indoor wheelchair curling training on trunk control of person with chronic spinal cord injury: A randomised controlled trial. Spinal Cord Ser. Cases 2018, 4, 26. [Google Scholar] [CrossRef]
- Altmann, V.C.; Groen, B.E.; Groenen, K.H.; Vanlandewijck, Y.C.; Van Limbeek, J.; Keijsers, N.L. Construct validity of the trunk impairment classification system in relation to objective measures of trunk impairment. Arch. Phys. Med. Rehabil. 2016, 97, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.M.; Lin, J.N.; Lin, H.S. The effects of a simplified Tai-Chi exercise program (STEP) on the physical health of older adults living in long-term care facilities: A single group design with multiple time points. Int. J. Nurs. Stud. 2008, 45, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Goosey-Tolfrey, V.L.; Leicht, C.A. Field-based physiological testing of wheelchair athletes. Sport Med. 2013, 43, 77–91. [Google Scholar] [CrossRef]
- Evans, M.B.; Shirazipour, C.H.; Allan, V. Integrating insights from the parasport community to understand optimal Experiences: The Quality Parasport Participation Framework. Psychol. Sport Exerc. 2018, 37, 79–90. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F. European normative values for physical fitness in children and adolescents aged 9-17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef]
- Nikolić, M.; Djurović, M.; Jovanović, P.; Madić, D.; Okičić, T. Eurofit Physical Fitness Test Battery for assessment of swimming skills in adolescents. Res. Phys. Educ. Sport Health 2018, 7, 83–86. [Google Scholar]
- Van Der Scheer, J.W.; De Groot, S.; Tepper, M. Low-intensity wheelchair training in inactive people with long-term spinal cord injury: A randomized controlled trial on fitness, wheelchair skill performance and physical activity levels. J. Rehabil. Med. 2016, 48, 33–42. [Google Scholar] [CrossRef]
- Van Straaten, M.G.; Cloud, B.A.; Morrow, M.M.; Ludewig, P.M.; Zhao, K.D. Effectiveness of home exercise on pain, function, and strength of manual wheelchair users with spinal cord injury: A high-dose shoulder program with telerehabilitation. Arch. Phys. Med. Rehabil. 2014, 95, 1810–1817.e2. [Google Scholar] [CrossRef]
- Bickelhaupt, B.; Oyama, S.; Benfield, J.; Burau, K.; Lee, S.; Trbovich, M. Effect of Wheelchair Stroke Pattern on Upper Extremity Muscle Fatigue. PMR 2018, 10, 1004–1011. [Google Scholar] [CrossRef]
- Kouwijzer, I.; Valent, L.J.M.; van Bennekom, C.A.M.; Post, M.W.M.; van der Woude, L.H.V.; de Groot, S. Training for the HandbikeBattle: An explorative analysis of training load and handcycling physical capacity in recreationally active wheelchair users. Disabil. Rehabil. 2022, 44, 2723–2732. [Google Scholar] [CrossRef]
- Bourassa, S.; Best, K.L.; Racine, M.; Borisoff, J.; Leblond, J.; Routhier, F. Use of actigraphy to measure real-world physical activities in manual wheelchair users. J. Rehabil. Assist. Technol. Eng. 2020, 7, 205566832090781. [Google Scholar] [CrossRef] [PubMed]
- Pommerening, H.; Van Dullemen, S.; Kieslich, M.; Schubert, R.; Zielen, S.; Voss, S. Body composition, muscle strength and hormonal status in patients with ataxia telangiectasia: A cohort study Rare immune deficiencies. Orphanet. J. Rare Dis. 2015, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Seferian, A.M.; Moraux, A.; Annoussamy, M. Upper limb strength and function changes during a one-year follow-up in non-ambulant patients with duchenne muscular dystrophy: An observational multicenter trial. PLoS ONE 2015, 10, e0113999. [Google Scholar] [CrossRef]
- Zukowski, L.A.; Roper, J.A.; Shechtman, O.; Otzel, D.M.; Bouwkamp, J.; Tillman, M.D. Comparison of metabolic cost, performance, and efficiency of propulsion using an ergonomic hand drive mechanism and a conventional manual wheelchair. Arch. Phys. Med. Rehabil. 2014, 95, 546–551. [Google Scholar] [CrossRef]
- Dallmeijer, A.J.; Kilkens, O.J.E.; Post, M.W.M. Hand-rim wheelchair propulsion capacity during rehabilitation of persons with spinal cord injury. J. Rehabil. Res. Dev. 2005, 42 (Suppl. S1), 55–63. [Google Scholar] [CrossRef]
- Werlauff, U.; Steffensen, B.F. The applicability of four clinical methods to evaluate arm and hand function in all stages of spinal muscular atrophy type II. Disabil. Rehabil. 2014, 36, 2120–2126. [Google Scholar] [CrossRef] [PubMed]
- Valent, L.J.; Dallmeijer, A.J.; Houdijk, H.; Slootman, H.J.; Post, M.W.; van der Woude, L.H. Influence of Hand Cycling on Physical Capacity in the Rehabilitation of Persons with a Spinal Cord Injury: A Longitudinal Cohort Study. Arch. Phys. Med. Rehabil. 2008, 89, 1016–1022. [Google Scholar] [CrossRef]
- Jun, E.M.; Roh, Y.H.; Kim, M.J. The effect of music-movement therapy on physical and psychological states of stroke patients. J. Clin. Nurs. 2013, 22, 22–31. [Google Scholar] [CrossRef]
- Akinoğlu, B.; Kocahan, T. Characteristics of upper extremity’s muscle strength in Turkish national wheelchair basketball players team. J. Exerc. Rehabil. 2017, 13, 62–67. [Google Scholar] [CrossRef]
- Wilbanks, S.R.; Rogers, R.; Pool, S.; Bickel, C.S. Effects of functional electrical stimulation assisted rowing on aerobic fitness and shoulder pain in manual wheelchair users with spinal cord injury. J. Spinal Cord Med. 2016, 39, 645–654. [Google Scholar] [CrossRef]
- Vanlandewijck, Y.C.; Verellen, J.; Beckman, E.; Connick, M.; Tweedy, S.M. Trunk strength effect on track wheelchair start: Implications for classification. Med. Sci. Sports Exerc. 2011, 43, 2344–2351. [Google Scholar] [CrossRef] [PubMed]
- Elena, B.; Francesca, M.; Flavia, M. Wheelchair propulsion biomechanics in junior basketball players: A method for the evaluation of the efficacy of a specific training program. Biomed. Res. Int. 2015, 2015, 275965. [Google Scholar]
- Ferro, A.; Villacieros, J.; Pérez-Tejero, J. Sprint performance of elite wheelchair basketball players: Applicability of a laser system for describing the velocity curve. Adapt. Phys. Act. Q. 2016, 33, 358–373. [Google Scholar] [CrossRef]
- Sagawa, Y.; Watelain, E.; Lepoutre, F.X.; Thevenon, A. Effects of wheelchair mass on the physiologic responses, perception of exertion, and performance during various simulated daily tasks. Arch. Phys. Med. Rehabil. 2010, 91, 1248–1254. [Google Scholar] [CrossRef]
- Verschuren, O.; Zwinkels, M.; Ketelaar, M.; Reijnders-van Son, F.; Takken, T. Reproducibility and validity of the 10-meter shuttle ride test in wheelchair-using children and adolescents with cerebral palsy. Phys. Ther. 2013, 93, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Mercer, S.E.; Beehler, P.J.H. An incremental brake force protocol for arm crank anaerobic testing of wheelchair athletes. Sport Med. Train. Rehabil. 2001, 10, 123–136. [Google Scholar] [CrossRef]
- Flueck, J.L. Experimental protocol of a three-minute, all-out arm crank exercise test in spinal-cord injured and able-bodied individuals. J. Vis. Exp. 2017, 2017, e55485. [Google Scholar] [CrossRef]
- Nooijen, C.F.J.; Post, M.W.M.; Spooren, A.L. Exercise self-efficacy and the relation with physical behavior and physical capacity in wheelchair-dependent persons with subacute spinal cord injury. J. Neuroeng. Rehabil. 2015, 12, 103. [Google Scholar] [CrossRef] [PubMed]
- Valent, L.J.M.; Dallmeijer, A.J.; Houdijk, H. Effects of hand cycle training on physical capacity in individuals with tetraplegia: A clinical trial. Phys. Ther. 2009, 89, 1051–1060. [Google Scholar] [CrossRef]
- Bakkum, A.J.T.; De Groot, S.; Stolwijk-Swüste, J.M.; Van Kuppevelt, D.J.; Van Der Woude, L.H.V.; Janssen, T.W.J. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: A 16-week randomized controlled trial. Spinal Cord 2015, 53, 395–401. [Google Scholar] [CrossRef]
- De Groot, S.; Dallmeijer, A.J.; Van Asbeck, F.W.A.; Post, M.W.M.; Bussmann, J.B.J.; Van Der Woude, L. Mechanical efficiency and wheelchair performance during and after spinal cord injury rehabilitation. Int. J. Sports Med. 2007, 28, 880–886. [Google Scholar] [CrossRef] [PubMed]
- De Groot, P.C.E.; Hjeltnes, N.; Heijboer, A.C.; Stal, W.; Birkeland, K. Effect of training intensity on physical capacity, lipid profile and insulin sensitivity in early rehabilitation of spinal cord injured individuals. Spinal Cord 2003, 41, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Widman, L.M.; McDonald, C.M.; Abresch, R.T. Effectiveness of an upper extremity exercise device integrated with computer gaming for aerobic training in adolescents with spinal cord dysfunction. J. Spinal Cord Med. 2006, 29, 363–370. [Google Scholar] [CrossRef]
- Janssen, T.W.J.; Dallmeijer, A.J.; Van Der Woude, L.H.V. Physical capacity and race performance of handcycle users. J. Rehabil. Res. Dev. 2001, 38, 33–40. [Google Scholar]
- Tavares, F.; Beaven, M.; Teles, J.; Baker, D.; Healey, P.; Smith, T.B.; Driller, M. Effects of Chronic Cold-Water Immersion in Elite Rugby Players. Int. J. Physiol. Perform. 2019, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chaikhot, D.; Reed, K.; Petroongrad, W.; Athanasiou, F.; van Kooten, D.; Hettinga, F.J. Effects of an Upper-Body Training Program Involving Resistance Exercise and High-Intensity Arm Cranking on Peak Handcycling Performance and Wheelchair Propulsion Efficiency in Able-Bodied Men. J. Strength Cond Res. 2020, 34, 2267–2275. [Google Scholar] [CrossRef]
- Skucas, K.; Pokvytyte, V. Short-term moderate intensive high volume training program provides aerobic endurance benefit in wheelchair basketball players. J. Sports Med. Phys. Fitness 2017, 57, 338–344. [Google Scholar] [CrossRef]
- Vanderthommen, M.; Francaux, M.; Colinet, C. A multistage field test of wheelchair users for evaluation of fitness and prediction of peak oxygen consumption. J. Rehabil. Res. Dev. 2002, 39, 685–692. [Google Scholar]
- Weissland, T.; Faupin, A.; Borel, B.; Leprêtre, P.M. Comparison between 30-15 intermittent fitness test and multistage field test on physiological responses in wheelchair basketball players. Front. Physiol. 2015, 6, 380. [Google Scholar] [CrossRef]
- Abonie, U.S.; Monden, P.; van der Woude, L.; Hettinga, F.J. Effect of a 7-week low intensity synchronous handcycling training programme on physical capacity in abled-bodied women. J. Sports Sci. 2021, 39, 1472–1480. [Google Scholar] [CrossRef]
- Bass, A.; Brosseau, R.; Décary, S.; Gauthier, C.; Gagnon, D.H. Comparison of the 6-Min Propulsion and Arm Crank Ergometer Tests to Assess Aerobic Fitness in Manual Wheelchair Users with a Spinal Cord Injury. Am. J. Phys. Med. Rehabil. 2020, 99, 1099–1108. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.S.; Lee, Y.H.; Kong, I.D. Predictive factors of peak aerobic capacity using simple measurements of anthropometry and musculoskeletal fitness in paraplegic men. J. Sports Med. Phys. Fitness 2019, 59, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Barfield, J.P.; Malone, L.A.; Arbo, C.; Jung, A.P. Exercise intensity during wheelchair rugby training. J. Sports Sci. 2010, 28, 389–398. [Google Scholar] [CrossRef]
- Vinet, A.; Le Gallais, D.; Bouges, S. Prediction of VO2peak in wheelchair-dependent athletes from the adapted Léger and Boucher test. Spinal Cord 2002, 40, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, C.; Arel, J.; Brosseau, R.; Hicks, A.L.; Gagnon, D.H. Reliability and minimal detectable change of a new treadmill-based progressive workload incremental test to measure cardiorespiratory fitness in manual wheelchair users. J. Spinal Cord Med. 2017, 40, 759–767. [Google Scholar] [CrossRef]
- Molik, B.; Kosmol, A.; Morgulec-Adamowicz, N. Comparison of Aerobic Performance Testing Protocols in Elite Male Wheelchair Basketball Players. J. Hum. Kinet. 2017, 60, 243–254. [Google Scholar] [CrossRef]
- Goosey-Tolfrey, V.L.; Batterham, A.M.; Tolfrey, K. Scaling Behavior of VO2peak in Trained Wheelchair Athletes. Med. Sci. Sports Exerc. 2003, 35, 2106–2111. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Tordi, N.; Ruiz, J.; Parratte, B. Changes in oxygen uptake, shoulder muscles activity, and propulsion cycle timing during strenuous wheelchair exercise. Spinal Cord 2007, 45, 468–474. [Google Scholar] [CrossRef]
- Antonelli, C.B.B.; Hartz, C.S.; Da Silva Santos, S.; Moreno, M.A. Effects of inspiratory muscle training with progressive loading on respiratory muscle function and sports performance in high-performance wheelchair basketball athletes: A randomized clinical trial. Int. J. Sports Physiol. Perform. 2020, 15, 238–242. [Google Scholar] [CrossRef]
- Iturricastillo, A.; Granados, C.; Los Arcos, A.; Yanci, J. Objective and subjective methods for quantifying training load in wheelchair basketball small-sided games. J. Sports Sci. 2017, 35, 749–755. [Google Scholar] [CrossRef]
- Bloemen, M.A.; Takken, T.; Backx, F.J.; Vos, M.; Kruitwagen, C.L.; de Groot, J.F. Validity and Reliability of Skill-Related Fitness Tests for Wheelchair-Using Youth with Spina Bifida. Arch. Phys. Med. Rehabil. 2017, 98, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, B.K.; Riva, G. Original research. Annu. Rev. Cyber Ther. Telemed. 2013, 11, 63. [Google Scholar] [CrossRef]
- de Groot, S.; Balvers, I.J.M.; Kouwenhoven, S.M.; Janssen, T.W.J. Validity and reliability of tests determining performance-related components of wheelchair basketball. J. Sports Sci. 2012, 30, 879–887. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.; Décary, S.; Charbonneau, M.F. The timed manual wheelchair slalom test: A reliable and accurate performance-based outcome measure for individuals with spinal cord injury. Arch. Phys. Med. Rehabil. 2011, 92, 1339–1343. [Google Scholar] [CrossRef]
- Altmann, V.C.; Groen, B.E.; Groeneweg, S.; van der Weijde, G.; Keijsers, N.L.W. Validation of new measures of arm coordination impairment in Wheelchair Rugby. J. Sports Sci. 2021, 39 (Suppl. S1), 91–98. [Google Scholar] [CrossRef]
Concepts | Research Strategies |
---|---|
1 | exp wheelchairs/ |
2 | ("wheelchair*").ti,ab. OR ("chair wheel").ti,ab. OR ("chairs wheel").ti,ab. OR ("wheel chair").ti,ab. |
1 and 2 | 1 OR 2 |
3 | exp physical fitness/ OR exp exercise tolerance/ OR exp physical functional performance/ OR exp psychomotor performance/ OR muscle strength/ OR exp hand strength/ OR exp physical education and training/ OR exp motor skills/ OR exp range of motion, articular/ OR exp arthrometry, articular/ OR exp postural balance/ OR exp physical endurance/ OR exp cardiorespiratory fitness/ |
4 | ("coordination").ti,ab. OR ("performance*").ti,ab. OR ("aerobic exercise*").ti,ab. OR ("exercise training").ti,ab. OR ("acute exercise").ti,ab. OR "physical Exercise" OR "speed movement " OR stamina OR "joint range of Motion " OR flexibility OR "passive range of motion" OR postural OR posture OR equilibrium OR "postur* control*" OR "physical fitness" OR "exercise tolerance" OR "psychomotor performance " OR "muscle strength" OR "hand strength" OR "physical education and training" OR "motor skills" OR "range of motion, articular" OR "arthrometry, articular" OR "postural balance" OR "physical endurance" OR "cardiorespiratory fitness" OR "physical competenc*" OR "physical capacity" |
3 and 4 | 3 OR 4 |
5 | exp circuit-based exercise/ OR exp aptitude tests/ OR exp exercise test/ OR exp outcome assessment, health/ OR exp aptitude/ |
6 | ("test* battery").ti,ab. OR ("fit* test*").ti,ab. OR ("exercis*").ti,ab. OR ("measure*").ti,ab. OR ("scor*").ti,ab. OR ("circuit-based Exercise").ti,ab. OR ("exercise test").ti,ab. OR ("outcome assessment, health").ti,ab. OR ("aptitude").ti,ab. |
3 and 4 | 5 OR 6 |
Physical Quality | Definition |
---|---|
Strength | The ability to overcome or oppose external resistance through muscular contraction [34]. |
Speed | The ability to perform motor actions in the shortest possible time, taking into account external conditions, thanks to the mobility of neuromuscular system processes and the capacity of the musculature to develop force [34]. |
Power | The ability to deliver maximum effort in an extremely short space of time [34]. |
Endurance Cardiovascular Muscular | A person’s maximum oxygen consumption capacity [34]. The ability to prolong a continuous contraction or to repeat it optimally for as long as possible [34]. |
Coordination | The ability to learn new motor skills more quickly and easily [34]. |
Flexibility | The ability to perform movements with the greatest possible amplitude, whether actively or passively [34]. |
Balance | The ability to stabilize oneself in a given environment (land, air, water) [34]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthod, C.; Berthiaume, J.; Schmouth, M.-È.; Bédard, J.; Routhier, F.; Best, K.L. A Mapping Review of Existing Tools to Assess Physical Qualities of Manual Wheelchair Users. Disabilities 2025, 5, 54. https://doi.org/10.3390/disabilities5020054
Barthod C, Berthiaume J, Schmouth M-È, Bédard J, Routhier F, Best KL. A Mapping Review of Existing Tools to Assess Physical Qualities of Manual Wheelchair Users. Disabilities. 2025; 5(2):54. https://doi.org/10.3390/disabilities5020054
Chicago/Turabian StyleBarthod, Corentin, Jade Berthiaume, Marie-Ève Schmouth, Joanie Bédard, François Routhier, and Krista L. Best. 2025. "A Mapping Review of Existing Tools to Assess Physical Qualities of Manual Wheelchair Users" Disabilities 5, no. 2: 54. https://doi.org/10.3390/disabilities5020054
APA StyleBarthod, C., Berthiaume, J., Schmouth, M.-È., Bédard, J., Routhier, F., & Best, K. L. (2025). A Mapping Review of Existing Tools to Assess Physical Qualities of Manual Wheelchair Users. Disabilities, 5(2), 54. https://doi.org/10.3390/disabilities5020054