Synthesis of Acylated Naphthohydroquinones Through Photo-Friedel–Crafts Acylation and Evaluation of Their Antibiotic Potential
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Studies
2.1.1. Solvent Optimization
2.1.2. Wavelength Optimization
2.2. Photoacylations
2.3. Oxidations
2.4. Antimicrobial Activity Testing
3. Materials and Methods
3.1. General Information
3.2. Photoacylations
3.2.1. General Procedure for Photoacylations with Artificial Light
3.2.2. General Procedure for Solar Photoacylations in Sunlight
3.3. Oxidations
3.3.1. Synthesis of Silver (I) Oxide [42]
3.3.2. General Procedure for Oxidation
3.4. Antimicrobial Activity Testing
General Procedure for Bioscreening
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hase, J.; Nishimura, T. Antibacterial Properties of Naphthoquinones. I. Syntheses and Antibacterial Properties of Acylnaphthoquinones. J. Pharm. Soc. Jpn. 1955, 75, 203–207. [Google Scholar] [CrossRef]
- Hase, J.; Nishimura, T. Antibacterial Properties of Naphthoquinones. II. Syntheses and Antibacterial Properties of Acylnaphthoquinones. J. Pharm. Soc. Jpn. 1955, 75, 207–209. [Google Scholar] [CrossRef]
- Araya, G.; Benites, J.; Reyes, J.S.; Marcoleta, A.E.; Valderrama, J.A.; Lagos, R.; Monasterio, O. Inhibition of Escherichia coli and Bacillus subtilis FtsZ Polymerization and Bacillus subtilis Growth by Dihydroxynaphtyl Aryl Ketones. Front. Microbiol. 2019, 10, 1225. [Google Scholar] [CrossRef]
- Pedroza, D.A.; De Leon, F.; Varela-Ramirez, A.; Lema, C.; Aguilera, R.J.; Mito, S. The cytotoxic Effect of 2-Acylated-1,4-naphthohydroquinones on Leukemia/Lymphoma Cells. Bioorg. Med. Chem. 2014, 22, 842–847. [Google Scholar] [CrossRef]
- Benites, J.; Valderrama, J.A.; Ríos, D.; Lagos, R.; Monasterio, O.; Calderon, P.B. Inhibition of Cancer Cell Growth and Migration by Dihydroxynaphthyl Aryl Ketones. Mol. Cell. Toxicol. 2016, 12, 237–242. [Google Scholar] [CrossRef]
- Benites, J.; Valderrama, J.A.; Contreras, Á.; Enríquez, C.; Pino-Rios, R.; Yáñez, O.; Calderon, P.B. Discovery of New 2-Phenylamino-3-acyl-1,4-naphthoquinones as Inhibitors of Cancer Cells Proliferation: Searching for Intra-Cellular Targets Playing a Role in Cancer Cells Survival. Molecules 2023, 28, 4323. [Google Scholar] [CrossRef]
- Oelgemöller, M.; Mattay, J. The “Photochemical Friedel-Crafts Acylation” of Quinones: From the Beginnings of Organic Photochemistry to Modern Solar Chemical Applications. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W.M., Lenci, F., Eds.; CRC Press: Boca Raton, FL, USA, 2004; Chapter 88; pp. 1–45. [Google Scholar] [CrossRef]
- Yonemitsu, O. Electron Transfer Photochemistry. Yakugaku Zasshi—J. Pharm. Soc. Jpn. 1982, 102, 716–734. [Google Scholar] [CrossRef]
- Martens, J.; Praefcke, K.; Schulze, U. Intramolekulare Photo-Friedel-Crafts-Reaktionen; eine neues Syntheseprinzip für Heterocyclen. Synthesis 1976, 532–533. [Google Scholar] [CrossRef]
- Bryce-Smith, D.; Deshpande, R.; Gilbert, A.; Grzonka, J. Acid-catalysis of Photochemical Reactions. Chem. Commun. 1970, 561–562. [Google Scholar] [CrossRef]
- Klinger, H. Ueber die Einwirkung des Sonnenlichts auf organische Verbindungen. Justus Liebigs Ann. Chem. 1888, 249, 137–146. [Google Scholar] [CrossRef]
- Kraus, G.A.; Kirihara, M. Quinone Photochemistry. A General Synthesis of Acylhydroquinones. J. Org. Chem. 1992, 57, 3256–3257. [Google Scholar] [CrossRef]
- Friedrichs, F.; Murphy, B.; Nayrat, D.; Ahner, T.; Funke, M.; Ryan, M.; Lex, J.; Mattay, J.; Oelgemöller, M. An improved Procedure for the Photoacylation of 1,4-Naphthoquinone with Aliphatic Aldehydes. Synlett 2008, 3137–3140. [Google Scholar] [CrossRef]
- Benites, J.; Rios, D.; Díaz, P.; Valderrama, J.A. The Solar-chemical Photo-Friedel–Crafts Heteroacylation of 1,4-Quinones. Tetrahedron Lett. 2011, 52, 609–611. [Google Scholar] [CrossRef]
- Mitchell, L.J.; Lewis, W.; Moody, C.J. Solar Photochemistry: Optimisation of the Photo Friedel–Crafts Acylation of Naphthoquinones. Green Chem. 2013, 15, 2830–2842. [Google Scholar] [CrossRef]
- Spruit, C.J.P. Carbonyl-substituted Naphthoquinones. Part I. Methyl Ketones Unsubstituted in the Side Chain. Recl. Trav. Chim. Pays-Bas 1947, 66, 655–672. [Google Scholar] [CrossRef]
- Arenas, P.; Peña, A.; Ríos, D.; Benites, J.; Muccioli, G.G.; Calderon, P.B.; Valderrama, J.A. Eco-Friendly Synthesis and Antiproliferative Evaluation of Some Oxygen Substituted Diaryl Ketones. Molecules 2013, 18, 9818–9832. [Google Scholar] [CrossRef]
- Benites, J.; Valderrama, J.A.; Ramos, M.; Valenzuela, M.; Guerrero-Castilla, A.; Muccioli, G.G.; Calderon, P.B. Half-Wave Potentials and In Vitro Cytotoxic Evaluation of 3-Acylated 2,5-Bis(phenylamino)-1,4-benzoquinones on Cancer Cells. Molecules 2019, 24, 1780. [Google Scholar] [CrossRef]
- Gutierrez, E.; Benites, J.; Valderrama, J.A.; Calderon, P.B.; Verrax, J.; Nova, E.; Villanelo, F.; Maturana, D.; Escobar, C.; Lagos, R.; et al. Binding of Dihydroxynaphthyl Aryl Ketones to Tubulin Colchicine Site Inhibits Microtubule Assembly. Biochem. Biophys. Res. Commun. 2015, 466, 418–425. [Google Scholar] [CrossRef]
- Kraus, G.A.; Mengwasser, J. Quinones as Key Intermediates in Natural Products Synthesis. Syntheses of Bioactive Xanthones from Hypericum perforatum. Molecules 2009, 14, 2857–2861. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Wee, Y.-J.; Kim, S.H. Anti-tyrosinase, Antioxidant, and Antibacterial Activities of Novel 5-Hydroxy-4-acetyl-2,3-dihydronaphtho[1,2-b]furans. Eur. J. Med. Chem. 2014, 86, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Majhi, S. Applications of Norrish Type I and II Reactions in the total Synthesis of Natural Products: A Review. Photochem. Photobiol. Sci. 2021, 20, 1357–1378. [Google Scholar] [CrossRef]
- Albini, A. Norrish’ Type I and II Reactions and their Role in the Building of Photochemical Science. Photochem. Photobiol. Sci. 2021, 20, 161–181. [Google Scholar] [CrossRef]
- Leshina, T.; Polyakov, N. The Mechanism of Photoreduction of Quinones by Alcohols from Proton CIDNP Data in high and low Magnetic Fields. J. Phys. Chem. 1990, 94, 4379–4382. [Google Scholar] [CrossRef]
- Maruyama, K.; Miyagi, Y. Photo-induced Condensation Reaction of p-Quinones with Aldehydes. Bull. Chem. Soc. Jpn. 1974, 47, 1303–1304. [Google Scholar] [CrossRef]
- Bunce, N.J.; Ridley, J.E.; Zerner, M.C. On the Excited States of p-Quinones and an Interpretation of the Photocycloaddition of p-Quinones to Alkenes. Theor. Chim. Acta 1977, 45, 283–300. [Google Scholar] [CrossRef]
- Kraus, G.A.; Liu, P. Benzophenone-Mediated Conjugate Additions of Aromatic Aldehydes to Quinones. Tetrahedron Lett. 1994, 35, 7723–7726. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M.T. Light Sources and Filters. In Handbook of Photochemistry, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; Chapter 11b; pp. 595–600. [Google Scholar] [CrossRef]
- Oelgemöller, M.; Schiel, C.; Fröhlich, R.; Mattay, J. The “Photo-Friedel-Crafts Acylation” of 1,4-Naphthoquinones. Eur. J. Org. Chem. 2002, 2465–2474. [Google Scholar] [CrossRef]
- Zhu, L.; Tang, Y.; Chen, Y.; Cronin, T. Wavelength-dependent Photolysis of C3-C7 Aldehydes in the 280–330 nm Region. Spectrosc. Lett. 2009, 42, 467–478. [Google Scholar] [CrossRef]
- Meng, Q.-X.; Sakaguchi, Y.; Hayashi, H. Effects of Substitution and Excited Wavelength on the Photochemistry of Benzaldehydes studied by CIDEP. Mol. Phys. 1997, 90, 15–23. [Google Scholar] [CrossRef]
- Vanoye, L.; Favre-Réguillon, A.; Aloui, A.; Philippe, R.; de Bellefon, C. Insights in the Aerobic Oxidation of Aldehydes. RSC Adv. 2013, 3, 18931–18937. [Google Scholar] [CrossRef]
- Vinogradov, M.G.; Nikishin, G.I. The Chemistry of Acyl Radicals in Solution. Russ. Chem. Rev. 1971, 40, 916–932. [Google Scholar] [CrossRef]
- De Leon, F.; Kalagara, S.; Navarro, A.A.; Mito, S. Synthesis of 6-Acyl-5,8-quinolinediols by Photo-Friedel–Crafts Acylation using Sunlight. Tetrahedron Lett. 2013, 54, 3147–3149. [Google Scholar] [CrossRef]
- Zeller, K.-P. Mass Spectra of Quinones. In The Chemistry of the Quinonoid Compounds Part 1; Patai, S., Ed.; John Wiley & Sons Ltd.: London, UK, 1974; Chapter 5; pp. 231–256. [Google Scholar] [CrossRef]
- Mone, N.S.; Bhagwat, S.A.; Sharma, D.; Chaskar, M.; Patil, R.H.; Zamboni, P.; Nawani, N.N.; Satpute, S.K. Naphthoquinones and Their Derivatives: Emerging Trends in Combating Microbial Pathogens. Coatings 2021, 11, 434. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Cushnie, B.; Echeverría, J.; Fowsantear, W.; Thammawat, S.; Dodgson, J.L.A.; Law, S.; Clow, S.M. Bioprospecting for Antibacterial Drugs: A Multidisciplinary Perspective on Natural Product Source Material, Bioassay Selection and avoidable Pitfalls. Pharm. Res. 2020, 37, 125. [Google Scholar] [CrossRef]
- Kemp, A.; Durand, M.; Wall, D.; Szieber, P.; Hermanns, M.I.; Oelgemöller, M. Synthesis of 1H-Isoindolin-1-ones via a Simple Photodecarboxylative Addition and Evaluation of their Antibiotic Activity. Photochem. Photobiol. Sci. 2024, 23, 1353–1360. [Google Scholar] [CrossRef]
- Jha, R.K.; Upadhyay, A.; Kanika Jain, S.; KA, N.; Kumar, S. Light-Driven Carbon−Carbon Coupling of α-sp3−CH of Aliphatic Alcohols with sp2−CH Bond of 1,4-Naphthoquinones. Org. Lett. 2022, 24, 7605–7610. [Google Scholar] [CrossRef]
- Yaseen, M.A.; Mumtaz, S.; Hunter, R.L.; Wall, D.; Belluau, V.; Robertson, M.J.; Oelgemöller, M. Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor. Aust. J. Chem. 2020, 73, 1149–1157, Erratum in: Aust. J. Chem. 2020, 73, 1301. [Google Scholar] [CrossRef]
- Helferich, B.; Klein, W. Zur Synthese von Disacchariden IV. Zwei Tetra-acetyl-β-d-glucosen. Liebigs Ann. Chem. 1926, 450, 219–229. [Google Scholar] [CrossRef]
- Green, I.R. The Synthesis of 2-Acetyl-1,4-naphthoquinone: A Multi-step Synthesis. J. Chem. Educ. 1982, 59, 698–699. [Google Scholar] [CrossRef]
- Sunassee, S.N.; Veale, C.G.L.; Shunmoogam-Gounden, N.; Osoniyi, O.; Hendricks, D.T.; Caira, M.R.; de la Mare, J.-A.; Edkins, A.L.; Pinto, A.V.; da Silva, E.N., Jr.; et al. Cytotoxicity of Lapachol, β-Lapachone and Related Synthetic 1,4-Naphthoquinones Against Oesophageal Cancer Cells. Eur. J. Med. Chem. 2013, 62, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Schiel, C.; Oelgemöller, M.; Mattay, J. Photoacylation of Electron rich Quinones: An Application of the Photo-Friedel-Crafts Reaction. Synthesis 2001, 1275–1279. [Google Scholar] [CrossRef]
- Schiel, C.; Oelgemöller, M.; Ortner, J.; Mattay, J. Green Photochemistry: The Solar-chemical Photo-Friedel-Crafts Acylation of Quinones. Green Chem. 2001, 3, 224–228. [Google Scholar] [CrossRef]
- Khan, H.; Rajesh, V.M.; Ravva, M.K.; Sen, S. Optimization of Blue LED Photo-Flow Synthesis in Continuous Flow Reactors Using Design of Experiments (DoE): Efficient Synthesis of Diverse Diaryl Ketones. Chem. Eng. J. 2024, 501, 157657. [Google Scholar] [CrossRef]
- Derikvand, F.; Bigi, F.; Maggi, R.; Piscopo, C.G.; Sartori, G. Oxidation of Hydroquinones to Benzoquinones with Hydrogen Peroxide using Catalytic Amount of Silver Oxide under Batch and Continuous-flow Conditions. J. Catal. 2010, 271, 99–103. [Google Scholar] [CrossRef]
- Otake, Y.; Nakamura, H.; Fuse, S. Recent Advances in the Integrated Micro-flow Synthesis Containing Photochemical Reactions. Tetrahedron Lett. 2018, 59, 1691–1697. [Google Scholar] [CrossRef]
Entry | Solvent | Conversion (%) 1 | Yield of 3a (%) |
---|---|---|---|
1 | acetone | 95 | 76 2 |
2 | acetonitrile | 94 | 75 2 |
3 | trifluorotoluene | 100 | 62 3 |
4 | xylenes | 64 | 51 |
5 | tert-amyl alcohol | 86 (30 4) | n.d. 5 |
6 | tert-butyl alcohol | 87 (4 4) | 67 |
7 | isopropanol | 73 (46 4) | n.d. 5 |
Entry | Irradiation Conditions | Solvent | Conversion (%) 1 | Yield of 3a (%) |
---|---|---|---|---|
1 | visible light, 2 Pyrex | trifluorotoluene | trace | n.d. 3 |
2 | visible light, 2 Pyrex | acetone | 54 | 21 4 |
3 | 419 ± 25 nm, Pyrex | acetone | 66 | 56 5 |
4 | 350 ± 25 nm, Pyrex | acetone | 80 | 60 5 |
5 | 350 ± 25 nm, Pyrex | trifluorotoluene | 100 | 55 6 |
6 | 300 ± 25 nm, Quartz | acetone | 74 (22 7) | 50 4 |
7 | 254 nm, Quartz | acetone | 96 (35 7, 28 8) | 30 4 |
8 | 254 nm, Quartz | acetonitrile | 89 (8 7, 38 8) | 40 4 |
Entry | R | Yield of 3 (%) 1 |
---|---|---|
1 | C3H7 | 53/45 2 (a) |
2 | CH3 | 50 (b) |
3 | C2H5 | 57 (c) |
4 | CH(CH3)2 | 45 (d) 3 |
5 | C4H9 | 57/47 2 (e) |
6 | C6H13 | 54/43 2 (f) |
7 | C11H23 | 57 (g) |
8 | Ph | 37 (h) 3 |
9 | p-MeC6H4 | 22 (i) |
10 | p-FC6H4 | 50 (j) |
11 | p-MeOC6H4 | 45 (k) |
Entry | R | Yield of 6 (%) |
---|---|---|
1 | C3H7 | 97 (a) |
2 | CH3 | 96 (b) |
3 | C2H5 | 98 (c) |
4 | CH(CH3)2 | 72 (d) |
5 | C4H9 | 98 (e) |
6 | C6H13 | 98 (f) |
7 | C11H23 | 98 (g) |
8 | Ph | 75 (h) |
9 | p-MeC6H4 | 95 (i) |
10 | p-FC6H4 | 95 (j) |
Entry | Compound | Inhibition (cm) 1 | ||
---|---|---|---|---|
100 μg | 10 μg | 5 μg | ||
1 | 3a | strong | moderate | moderate |
2 | 3b | strong | moderate | weak |
3 | 3c | strong | moderate | moderate |
4 | 3d | strong | moderate | moderate |
5 | 3e | strong | moderate | moderate |
6 | 3f | strong | moderate | moderate |
7 | 3g | inactive | inactive | inactive |
8 | 3h | strong | moderate | moderate |
9 | 3i | strong | moderate | moderate |
10 | 3j | strong | moderate | inactive |
11 | 3k | strong | moderate | moderate |
12 | 6a | strong | moderate | inactive |
13 | 6b | strong | moderate | weak |
14 | 6c | strong | weak | inactive |
15 | 6e | strong | moderate | weak |
16 | 6f | strong | moderate | inactive |
17 | 6g | inactive | inactive | inactive |
18 | 6i | moderate | moderate | moderate |
19 | 6j | strong | moderate | moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mercier, A.; Monet, A.; Yaseen, M.A.; Hermanns, M.I.; Oelgemöller, M. Synthesis of Acylated Naphthohydroquinones Through Photo-Friedel–Crafts Acylation and Evaluation of Their Antibiotic Potential. Photochem 2024, 4, 501-510. https://doi.org/10.3390/photochem4040031
Mercier A, Monet A, Yaseen MA, Hermanns MI, Oelgemöller M. Synthesis of Acylated Naphthohydroquinones Through Photo-Friedel–Crafts Acylation and Evaluation of Their Antibiotic Potential. Photochem. 2024; 4(4):501-510. https://doi.org/10.3390/photochem4040031
Chicago/Turabian StyleMercier, Alexis, Alizée Monet, Madyan A. Yaseen, M. Iris Hermanns, and Michael Oelgemöller. 2024. "Synthesis of Acylated Naphthohydroquinones Through Photo-Friedel–Crafts Acylation and Evaluation of Their Antibiotic Potential" Photochem 4, no. 4: 501-510. https://doi.org/10.3390/photochem4040031
APA StyleMercier, A., Monet, A., Yaseen, M. A., Hermanns, M. I., & Oelgemöller, M. (2024). Synthesis of Acylated Naphthohydroquinones Through Photo-Friedel–Crafts Acylation and Evaluation of Their Antibiotic Potential. Photochem, 4(4), 501-510. https://doi.org/10.3390/photochem4040031