Effects of Residual Water on Proton Transfer-Switching Molecular Device
Abstract
:1. Introduction
2. Computational Details
2.1. Ab Initio Calculations
2.2. Direct Ab Initio Molecular Dynamics (AIMD) Calculations
3. Results
3.1. Structures of OHBA Systems
3.2. Proton Transfer Dynamics on T1 Potential Energy Surface of OHBA
3.3. Proton Transfer Dynamics in OHBA(T1)-H2O
3.4. Effects of Zero-Point Energy (ZPE) on the Reaction Mechanism
3.5. Summary of Trajectory Calculations
4. Discussion
4.1. Reaction Model
4.2. Effects of H2O on Proton Transfer-Switching Devices
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.-K.; Wang, C.-H.; Wu, C.-C.; Chang, W.; Wang, C.-H.; Liu, Y.-H.; Chen, C.-T.; Chou, P.-T. Hydrogen-Bonded Thiol Undergoes Unconventional Excited-State Intramolecular Proton-Transfer Reactions. J. Am. Chem. Soc. 2024, 146, 3125–3135. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.; Li, T.E.; Hammes-Schiffer, S. Nuclear–Electronic Orbital Quantum Mechanical/Molecular Mechanical Real-Time Dynamics. J. Phys. Chem. Lett. 2023, 14, 9556–9562. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, R.; Blum, V.; Li, T.E.; Hammes-Schiffer, S.; Kanai, Y. First-Principles Approach for Coupled Quantum Dynamics of Electrons and Protons in Heterogeneous Systems. Phys. Rev. Lett. 2023, 131, 238002. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-H.; Karas, L.J.; Ottosson, K.; Wu, J.I.-C. Excited-state proton transfer relieves antiaromaticity in molecules. Proc. Natl. Acad. Sci. USA 2019, 116, 20303–20308. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Tang, J.; Zhou, Q.; Yu, Z.; Wu, D.; Tang, D. Excited-State Intramolecular Proton Transfer-Driven Photon-Gating for Photoelectrochemical Sensing of CO-Releasing Molecule-3. Anal. Chem. 2024, 96, 5014–5021. [Google Scholar] [CrossRef]
- Liao, J.-Z.; Liu, S.-J.; Ke, H. Excited-State Proton Transfer in a Photoacid-Based Crystalline Coordination Compound: Reversible Photochromism, Near-Infrared Photothermal Conversion, and Conductivity. Inorg. Chem. 2023, 62, 16825–16831. [Google Scholar] [CrossRef]
- Samoylova, E.; Smith; Ritze, H.H.; Radloff, W.; Kabelac, M.; Schultz, T. Ultrafast deactivation processes in aminopyridine clusters: Excitation energy dependence and isotope effects. J. Am. Chem. Soc. 2006, 128, 15652–15656. [Google Scholar] [CrossRef]
- Tachikawa, H.; Fukuzumi, T. Ionization dynamics of aminopyridine dimer: A direct ab initio molecular dynamics (MD) study. Phys. Chem. Chem. Phys. 2011, 13, 5881–5887. [Google Scholar] [CrossRef]
- Tachikawa, H. Effects of single water molecule on proton transfer reaction in uracil dimer cation. Theor. Chem. Acc. 2016, 135, 55. [Google Scholar] [CrossRef]
- Tachikawa, H.; Kawabata, H. Molecular Design of Ionization-Induced Proton Switching Element Based on Fluorinated DNA Base Pair. J. Phys. Chem. A 2016, 120, 1529–1535. [Google Scholar] [CrossRef]
- Stock, K.; Bizjak, T.; Lochbrunner, S. Proton transfer and internal conversion of o-hydroxybenzaldehyde: Coherent versus statistical excited-state dynamics. Chem. Phys. Lett. 2002, 354, 409–416. [Google Scholar] [CrossRef]
- Nagaoka, S.; Nagashima, U. Intramolecular proton transfer in various electronic states of o-hydroxybenzaldehyde. Chem. Phys. 1989, 136, 153–163. [Google Scholar] [CrossRef]
- Shekhovtsov, N.A.; Nikolaenkova, E.B.; Ryadun, A.A.; Samsonenko, D.G.; Tikhonov, A.Y.; Bushuev, M.B. ESIPT-Capable 4-(2-Hydroxyphenyl)-2-(Pyridin-2-yl)-1H-Imidazoles with Single and Double Proton Transfer: Synthesis, Selective Reduction of the Imidazolic OH Group and Luminescence. Molecules 2023, 28, 1793. [Google Scholar] [CrossRef]
- Nag, P.; Rohila, P.; Vennapusa, S.R. ESIPT and anti-Kasha behavior in hydroxy-aza-[n]cycloparaphenylenes. J. Photochem. Photobiol. A 2024, 448, 115296. [Google Scholar] [CrossRef]
- Herek, J.L.; Pedersen, S.; Bañares, L.; Zewail, A.H. Femtosecond real-time probing of reactions. IX. Hydrogen-atom transfer. J. Chem. Phys. 1992, 97, 9046–9061. [Google Scholar] [CrossRef]
- Nagaoka, S.; Nagashima, U.; Ohta, N.; Fujita, M.; Takemura, T. Electronic-state dependence of intramolecular proton transfer of o-hydroxybenzaldehyde. J. Phys. Chem. 1988, 92, 166–171. [Google Scholar] [CrossRef]
- Nagaoka, S.; Nakamura, A.; Nagashima, U. Nodal-plane model for excited-state intramolecular proton transfer of o-hydroxybenzaldehyde: Substituent effect. J. Photochem. Photobiol. A 2002, 154, 23–32. [Google Scholar] [CrossRef]
- Nagashima, U.; Nagaoka, S.; Katsumata, S. Investigation of dynamic processes in low-lying ionic states of o-hydroxybenzaldehyde. J. Phys. Chem. 1991, 95, 3532–3538. [Google Scholar] [CrossRef]
- Nagaoka, S.; Nagashima, U. Effects of node of wave function upon excited-state intramolecular proton transfer of hydroxyanthraquinones and aminoanthraquinones. Chem. Phys. 1996, 206, 353–362. [Google Scholar] [CrossRef]
- Nagaoka, S.; Teramae, H.; Nagashima, U. Computational Study of Excited-State Intramolecular-Proton-Transfer of o-Hydroxybenzaldehyde and Its Derivatives. Bull. Chem. Soc. Jpn. 2009, 82, 570–573. [Google Scholar] [CrossRef]
- Ji, S.; Ding, Z.; Zhao, J.; Zheng, D. Substituent control of dynamical process for excited state intramolecular proton transfer of benzothiazole derivatives. Chem. Phys. 2022, 560, 111568. [Google Scholar] [CrossRef]
- Kiralj, R.; Ferreira, M.M.C. Simple Quantitative Structure-Property Relationship (QSPR) Modeling of 17O Carbonyl Chemical Shifts in Substituted Benzaldehydes Compared to DFT and Empirical Approaches. J. Phys. Chem. A 2008, 112, 6134–6149. [Google Scholar] [CrossRef] [PubMed]
- De, S.P.; Ash, S.; Bhui, D.; Bar, H.; Sarkar, P.; Sahoo, G.P.; Misra, A. DFT based computational study on the excited state intramolecular proton transfer processes in o-hydroxybenzaldehyde. Spectrochim. Acta A Mol. Biomol. Spec. 2009, 71, 1728–1735. [Google Scholar] [CrossRef]
- Tachikawa, H.; Kawabata, H.; Miyamoto, R.; Nakayama, K.; Yokoyama, M. Experimental and Theoretical Studies on the Organic-Inorganic Hybrid Compound: Aluminum-NTCDA Co-Deposited Film. J. Phys. Chem. B 2005, 109, 3139–3145. [Google Scholar] [CrossRef]
- Tachikawa, H. Effects of micro-solvation on the reaction dynamics of biphenyl cations following hole capture. Chem. Phys. 2017, 490, 12–18. [Google Scholar] [CrossRef]
- Tachikawa, H.; Iura, R.; Kawabata, H. Water-accelerated pi-Stacking Reaction in Benzene Cluster Cation. Sci. Rep. 2019, 9, 2377. [Google Scholar] [CrossRef]
- Ghediya, P.R.; Magari, Y.; Sadahira, H.; Endo, T.; Furuta, M.; Zhang, Y.; Matsuo, Y.; Ohta, H. Reliable operation in high-mobility indium oxide thin film transistors. Small Methods 2024, 2400578. [Google Scholar] [CrossRef] [PubMed]
- Yanai, T.; Tew, T.D.; Handy, N.C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Pople, J.A.; Frisch, M.J. MP2 energy evaluation by direct methods. Chem. Phys. Lett. 1988, 153, 503–506. [Google Scholar] [CrossRef]
- Head-Gordon, M.; Head-Gordon, T. Analytic MP2 Frequencies Without Fifth Order Storage: Theory and Application to Bifurcated Hydrogen Bonds in the Water Hexamer. Chem. Phys. Lett. 1994, 220, 122–128. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Schlegel, H.B.; Millam, J.M.; Iyengar, S.S.; Voth, G.A.; Daniels, A.D.; Scuseria, G.E.; Frisch, M.J. Ab initio Molecular Aerodynamics: Propagating the Density Matrix with Gaussian Orbitals. J. Chem. Phys. 2001, 114, 9758–9763. [Google Scholar] [CrossRef]
- Iyengar, S.S.; Schlegel, H.B.; Millam, J.M.; Voth, G.A.; Scuseria, G.E.; Frisch, M.J. Ab initio Molecular Dynamics: Propagating the Density Matrix with Gaussian Orbitals. II. Generalizations based on Mass-weighting, Idempotency, Energy Conservation and Choice of Initial Conditions. J. Chem. Phys. 2001, 115, 10291–10302. [Google Scholar] [CrossRef]
- Schlegel, H.B.; Iyengar, S.S.; Li, X.; Millam, J.M.; Voth, G.A.; Scuseria, G.E.; Frisch, M.J. Ab initio molecular dynamics: Propagating the Density Matrix with Gaussian Orbitals. III. Comparison with Born-Oppenheimer Dynamics. J. Chem. Phys. 2002, 117, 8694–8704. [Google Scholar] [CrossRef]
- Tachikawa, H. Intracluster reaction dynamics of NO+(H2O)n. J. Chem. Phys. 2024, 161, 094306. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, H. Mechanism of ionic dissociation of HCl in the smallest water clusters. Phys. Chem. Chem. Phys. 2024, 26, 3623–3631. [Google Scholar] [CrossRef]
- Tachikawa, H. Reaction Mechanism of an Intracluster SN2 Reaction Induced by Electron Capture. Phys. Chem. Chem. Phys. 2022, 24, 3941–3950. [Google Scholar] [CrossRef]
Functional | CAM-B3LYP | CAM-B3LYP | CAM-B3LYP | wB97XD | ZPE | |
---|---|---|---|---|---|---|
basis set | /6-311++G(d,p) | /6-311G(d,p) | /6-31G(d) | /6-311G(d,p) | 34.3 | |
OHBA | OHBA | 50.2 (42.9) | 48.2 | 52.5 | 57.3 | |
OHBA-H2O | type 1 | 61.5 | 59.0 | 64.4 | 66.9 | |
type 2 | 43.7 | 41.7 | 43.4 | 48.3 | ||
type 3 | 251.2 | 320.5 | 502.4 | 442.6 | 153.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tachikawa, H. Effects of Residual Water on Proton Transfer-Switching Molecular Device. Photochem 2024, 4, 462-473. https://doi.org/10.3390/photochem4040028
Tachikawa H. Effects of Residual Water on Proton Transfer-Switching Molecular Device. Photochem. 2024; 4(4):462-473. https://doi.org/10.3390/photochem4040028
Chicago/Turabian StyleTachikawa, Hiroto. 2024. "Effects of Residual Water on Proton Transfer-Switching Molecular Device" Photochem 4, no. 4: 462-473. https://doi.org/10.3390/photochem4040028
APA StyleTachikawa, H. (2024). Effects of Residual Water on Proton Transfer-Switching Molecular Device. Photochem, 4(4), 462-473. https://doi.org/10.3390/photochem4040028