A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration
Abstract
:1. Introduction
2. Applications of HSI to Detect Food Adulteration
2.1. Tea, Coffee, and Cocoa
2.2. Nuts and Seeds
2.3. Honey and Oil
2.4. Herbs and Spices
2.5. Milk and Milk Products
2.6. Meat and Meat Products
2.7. Cereal and Cereal Products
2.8. Fish and Fishery Products
3. New Trends in HSI Based Methods
3.1. Hyperspectral Image Processing
3.2. Selecting Feature Wavelengths to Design Multispectral Imaging Instruments
3.3. Application of Regression Methods in HSI
3.4. Snapshot Hyperspectral Imaging
3.5. Alternative Imaging-Based Methods
3.6. Data Fusion
4. Conclusions and Future Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Ulberth, F. Tools to combat food fraud—A gap analysis. Food Chem. 2020, 127044. [Google Scholar] [CrossRef]
- Wang, K.; Sun, D.-W. Chapter 9—Imaging Spectroscopic Technique: Raman Chemical Imaging. In Modern Techniques for Food Authentication, 2nd ed.; Sun, D.-W., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 287–319. [Google Scholar]
- Wu, D.; Sun, D.-W. Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review—Part II: Applications. Innov. Food Sci. Emerg. Technol. 2013, 19, 15–28. [Google Scholar] [CrossRef]
- Caballero, D.; Ríos-Reina, R.; Amigo, J. Chemometrics and Food Traceability. In Comprehensive Foodomics; Cifuentes, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 387–406. [Google Scholar]
- Huang, H.; Liu, L.; Ngadi, M. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitworth, M.; Millar, S.; Chau, A. Food quality assessment by NIR hyperspectral imaging. In Sensing for Agriculture and Food Quality and Safety II; International Society for Optics and Photonics: Bellingham, WA, USA, 2010. [Google Scholar]
- Minaei, S.; Shafiee, S.; Polder, G.; Moghadam-Charkari, N.; van Ruth, S.; Barzegar, M.; Zahiri, J.; Alewijn, M.; Kuś, P.M. VIS/NIR imaging application for honey floral origin determination. Infrared Phys. Technol. 2017, 86, 218–225. [Google Scholar] [CrossRef] [Green Version]
- He, H.J.; Wu, D.; Sun, D.W. Nondestructive spectroscopic and imaging techniques for quality evaluation and assessment of fish and fish products. Crit. Rev. Food. Sci. Nutr. 2015, 55, 864–886. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Feng, Y.-Z.; Sun, D.-W. Recent Progress of Hyperspectral Imaging on Quality and Safety Inspection of Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.L.; Xie, X.S. Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine. Annu. Rev. Anal. Chem. 2008, 1, 883–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Chao, K.; Kim, M. Raman Chemical Imaging System for Food Safety and Quality Inspection. Trans. ASABE 2010, 53. [Google Scholar] [CrossRef]
- Yaseen, T.; Sun, D.-W.; Cheng, J.-H. Raman imaging for food quality and safety evaluation: Fundamentals and applications. Trends Food Sci. Technol. 2017, 62, 177–189. [Google Scholar] [CrossRef]
- Wadood, S.A.; Boli, G.; Xiaowen, Z.; Hussain, I.; Yimin, W. Recent development in the application of analytical techniques for the traceability and authenticity of food of plant origin. Microchem. J. 2020, 152, 104295. [Google Scholar] [CrossRef]
- Kim, M.S.; Lefcourt, A.M.; Chen, Y.R. Multispectral laser-induced fluorescence imaging system for large biological samples. Appl. Opt. 2003, 42, 3927–3934. [Google Scholar] [CrossRef]
- Jun, W.; Lee, K.; Millner, P.; Sharma, M.; Chao, K.; Kim, M.S. Portable hyperspectral fluorescence imaging system for detection of biofilms on stainless steel surfaces. Proc. SPIE 2008, 6983. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, Y.; Rao, X.; Li, J. Quality and safety assessment of food and agricultural products by hyperspectral fluorescence imaging. J. Sci. Food Agric. 2012, 92, 2397–2408. [Google Scholar] [CrossRef] [PubMed]
- Sikorska, E.; Khmelinskii, I.; Sikorski, M. Fluorescence spectroscopy and imaging instruments for food quality evaluation. In Evaluation Technologies for Food Quality; Woodhead Publishing: Cambridge, UK, 2019; pp. 491–533. [Google Scholar]
- Qin, J.; Chao, K.; Kim, M.S.; Lu, R.; Burks, T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality. J. Food Eng. 2013, 118, 157–171. [Google Scholar] [CrossRef]
- Gowen, A.; O’Donnell, C.; Cullen, P.J.; Downey, G.; Frías, J. Hyperspectral imaging-An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Q.; Cai, J.; Ouyang, Q. Automated tea quality classification by hyperspectral imaging. Appl. Opt. 2009, 48, 3557–3564. [Google Scholar] [CrossRef]
- Kelman, T.; Ren, J.; Marshall, S. Effective classification of Chinese tea samples in hyperspectral imaging. Artif. Intell. 2013, 2. [Google Scholar] [CrossRef] [Green Version]
- Djokam, M.; Sandasi, M.; Chen, W.; Viljoen, A.; Vermaak, I. Hyperspectral Imaging as a Rapid Quality Control Method for Herbal Tea Blends. Appl. Sci. 2017, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- Sandasi, M.; Chen, W.; Vermaak, I.; Viljoen, A. Non-destructive quality assessment of herbal tea blends using hyperspectral imaging. Phytochem. Lett. 2018, 24, 94–101. [Google Scholar] [CrossRef]
- Mishra, P.; Nordon, A.; Mohd Asaari, M.S.; Lian, G.; Redfern, S. Fusing spectral and textural information in near-infrared hyperspectral imaging to improve green tea classification modelling. J. Food Eng. 2019, 249, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Calvini, R.; Ulrici, A.; Amigo, J.M. Practical comparison of sparse methods for classification of Arabica and Robusta coffee species using near infrared hyperspectral imaging. Chemom. Intell. Lab. Syst. 2015, 146, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Liu, F.; He, Y. Identification of coffee bean varieties using hyperspectral imaging: Influence of preprocessing methods and pixel-wise spectra analysis. Sci. Rep. 2018, 8, 2166. [Google Scholar] [CrossRef] [PubMed]
- Forchetti, D.A.P.; Poppi, R.J. Detection and Quantification of Adulterants in Roasted and Ground Coffee by NIR Hyperspectral Imaging and Multivariate Curve Resolution. Food Anal. Methods 2020, 13, 44–49. [Google Scholar] [CrossRef]
- Acierno, V.; Fasciani, G.; Kiani, S.; Caligiani, A.; van Ruth, S. PTR-QiToF-MS and HSI for the characterization of fermented cocoa beans from different origins. Food Chem. 2019, 289, 591–602. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, B.; Rao, X.; Berney, G.; Tao, Y. Discrimination of black walnut shell and pulp in hyperspectral fluorescence imagery using Gaussian kernel function approach. J. Food Eng. 2007, 81, 108–117. [Google Scholar] [CrossRef]
- Jiang, L.; Zhu, B.; Jing, H.; Chen, X.; Rao, X.; Tao, Y. Gaussian Mixture Model-Based Walnut Shell and Meat Classification in Hyperspectral Fluorescence Imagery. Trans. ASABE 2007, 50, 153–160. [Google Scholar] [CrossRef]
- Zhu, B.; Jiang, L.; Jin, F.; Qin, L.; Vogel, A.; Tao, Y. Walnut shell and meat differentiation using fluorescence hyperspectral imagery with ICA-kNN optimal wavelength selection. Sens. Instrum. Food Qual. Saf. 2007, 1, 123–131. [Google Scholar] [CrossRef]
- Ekşi, H.; Mentes-Yilmaz, O.; Boyacı, I. Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. Eur. Food Res. Technol. 2015, 242. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Heo, S.; Bae, S.; Kim, J.; Moon, K.-D. Discriminating the origin of basil seeds (Ocimum basilicum L.) using hyperspectral imaging analysis. LWT 2020, 118, 108715. [Google Scholar] [CrossRef]
- Baiano, A. Applications of hyperspectral imaging for quality assessment of liquid based and semi-liquid food products: A review. J. Food Eng. 2017, 214, 10–15. [Google Scholar] [CrossRef]
- Martínez Gila, D.M.; Cano Marchal, P.; Gámez García, J.; Gómez Ortega, J. On-line system based on hyperspectral information to estimate acidity, moisture and peroxides in olive oil samples. Comput. Electron. Agric. 2015, 116, 1–7. [Google Scholar] [CrossRef]
- González-Cabrera, M.; Domínguez-Vidal, A.; Ayora-Cañada, M.J. Hyperspectral FTIR imaging of olive fruit for understanding ripening processes. Postharvest Biol. Technol. 2018, 145, 74–82. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Moon, K.-D. Non-destructive discrimination of sesame oils via hyperspectral image analysis. J. Food Compos. Anal. 2020, 90, 103505. [Google Scholar] [CrossRef]
- Shafiee, S.; Polder, G.; Minaei, S.; Moghadam-Charkari, N.; van Ruth, S.; Kuś, P.M. Detection of Honey Adulteration using Hyperspectral Imaging. IFAC-PapersOnLine 2016, 49, 311–314. [Google Scholar] [CrossRef]
- Noviyanto, A.; Abdulla, W.H. Segmentation and calibration of hyperspectral imaging for honey analysis. Comput. Electron. Agric. 2019, 159, 129–139. [Google Scholar] [CrossRef]
- Noviyanto, A.; Abdulla, W.H. Honey botanical origin classification using hyperspectral imaging and machine learning. J. Food Eng. 2020, 265, 109684. [Google Scholar] [CrossRef]
- Kucharska-Ambrożej, K.; Karpinska, J. The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchem. J. 2020, 153, 104278. [Google Scholar] [CrossRef]
- Shikanga, E.A.; Viljoen, A.M.; Vermaak, I.; Combrinck, S. A novel approach in herbal quality control using hyperspectral imaging: Discriminating between Sceletium tortuosum and Sceletium crassicaule. Phytochem. Anal. 2013, 24, 550–555. [Google Scholar] [CrossRef]
- Vermaak, I.; Viljoen, A.; Lindström, S.W. Hyperspectral imaging in the quality control of herbal medicines—The case of neurotoxic Japanese star anise. J. Pharm. Biomed. Anal. 2013, 75, 207–213. [Google Scholar] [CrossRef]
- Sandasi, M.; Vermaak, I.; Chen, W.; Viljoen, A.M. Hyperspectral imaging and chemometric modeling of echinacea—A novel approach in the quality control of herbal medicines. Molecules 2014, 19, 13104–13121. [Google Scholar] [CrossRef] [Green Version]
- Tankeu, S.; Vermaak, I.; Chen, W.; Sandasi, M.; Viljoen, A. Differentiation between two “fang ji” herbal medicines, Stephania tetrandra and the nephrotoxic Aristolochia fangchi, using hyperspectral imaging. Phytochemistry 2016, 122, 213–222. [Google Scholar] [CrossRef]
- September, D.J.F. Detection and Quantification of Spice Adulteration by Near Infrared Hyperspectral Imaging. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2011. [Google Scholar]
- Orrillo, I.; Cruz-Tirado, J.P.; Cardenas, A.; Oruna, M.; Carnero, A.; Barbin, D.F.; Siche, R. Hyperspectral imaging as a powerful tool for identification of papaya seeds in black pepper. Food Control 2019, 101, 45–52. [Google Scholar] [CrossRef]
- Kiani, S.; van Ruth, S.M.; van Raamsdonk, L.W.D.; Minaei, S. Hyperspectral imaging as a novel system for the authentication of spices: A nutmeg case study. LWT 2019, 104, 61–69. [Google Scholar] [CrossRef]
- Ke, J.; Rao, L.; Zhou, L.; Chen, X.; Zhang, Z. Non-destructive determination of volatile oil and moisture content and discrimination of geographical origins of Zanthoxylum bungeanum Maxim. by hyperspectral imaging. Infrared Phys. Technol. 2020, 105, 103185. [Google Scholar] [CrossRef]
- Bandara, W.G.C.; Prabhath, G.W.K.; Dissanayake, D.W.S.C.B.; Herath, V.R.; Godaliyadda, G.M.R.I.; Ekanayake, M.P.B.; Demini, D.; Madhujith, T. Validation of multispectral imaging for the detection of selected adulterants in turmeric samples. J. Food Eng. 2020, 266, 109700. [Google Scholar] [CrossRef]
- Fu, X.; Kim, M.S.; Chao, K.; Qin, J.; Lim, J.; Lee, H.; Garrido-Varo, A.; Pérez-Marín, D.; Ying, Y. Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses. J. Food Eng. 2014, 124, 97–104. [Google Scholar] [CrossRef]
- Lim, J.; Kim, G.; Mo, C.; Kim, M.S.; Chao, K.; Qin, J.; Fu, X.; Baek, I.; Cho, B.K. Detection of melamine in milk powders using near-infrared hyperspectral imaging combined with regression coefficient of partial least square regression model. Talanta 2016, 151, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Kim, M.S.; Delwiche, S.R.; Chao, K.; Qin, J.; Mo, C.; Esquerre, C.; Zhu, Q. Quantitative analysis of melamine in milk powders using near-infrared hyperspectral imaging and band ratio. J. Food Eng. 2016, 181, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Barreto, A.; Cruz-Tirado, J.P.; Siche, R.; Quevedo, R. Determination of starch content in adulterated fresh cheese using hyperspectral imaging. Food Biosci. 2018, 21, 14–19. [Google Scholar] [CrossRef]
- Lei, T.; Lin, X.-H.; Sun, D.-W. Rapid classification of commercial Cheddar cheeses from different brands using PLSDA, LDA and SPA–LDA models built by hyperspectral data. J. Food Meas. Charact. 2019, 13, 3119–3129. [Google Scholar] [CrossRef]
- Premanandh, J. Horse meat scandal—A wake-up call for regulatory authorities. Food Control 2013, 34, 568–569. [Google Scholar] [CrossRef]
- Robson, K.; Dean, M.; Brooks, S.; Haughey, S.; Elliott, C. A 20-year analysis of reported food fraud in the global beef supply chain. Food Control 2020, 116, 107310. [Google Scholar] [CrossRef]
- Park, B.; Chen, Y.R.; Nguyen, M. Multi-spectral Image Analysis using Neural Network Algorithm for Inspection of Poultry Carcasses. J. Agric. Eng. Res. 1998, 69, 351–363. [Google Scholar] [CrossRef]
- Elmasry, G.; Barbin, D.; Sun, D.-W.; Allen, P. Meat Quality Evaluation by Hyperspectral Imaging Technique: An Overview. Crit. Rev. Food Sci. Nutr. 2012, 52, 689–711. [Google Scholar] [CrossRef]
- Barbin, D.F.; Sun, D.-W.; Su, C. NIR hyperspectral imaging as non-destructive evaluation tool for the recognition of fresh and frozen–thawed porcine longissimus dorsi muscles. Innov. Food Sci. Emerg. Technol. 2013, 18, 226–236. [Google Scholar] [CrossRef]
- Ma, J.; Pu, H.; Sun, D.-W.; Gao, W.; Qu, J.-H.; Ma, K.-Y. Application of Vis–NIR hyperspectral imaging in classification between fresh and frozen-thawed pork Longissimus Dorsi muscles. Int. J. Refrig. 2015, 50, 10–18. [Google Scholar] [CrossRef]
- Pu, H.; Sun, D.-W.; Ma, J.; Cheng, J.-H. Classification of fresh and frozen-thawed pork muscles using visible and near infrared hyperspectral imaging and textural analysis. Meat Sci. 2015, 99, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Sun, D.W.; ElMasry, G.; Allen, P. Fast detection and visualization of minced lamb meat adulteration using NIR hyperspectral imaging and multivariate image analysis. Talanta 2013, 103, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Makino, Y.; Oshita, S. Rapid and non-destructive detection of chicken adulteration in minced beef using visible near-infrared hyperspectral imaging and machine learning. J. Food Eng. 2016, 170, 8–15. [Google Scholar] [CrossRef]
- Zheng, X.; Li, Y.; Wei, W.; Peng, Y. Detection of adulteration with duck meat in minced lamb meat by using visible near-infrared hyperspectral imaging. Meat Sci. 2019, 149, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Novell, C.; Garrido-Varo, A.; Pérez-Marín, D.; Guerrero, J.E. Using spectral and textural data extracted from hyperspectral near infrared spectroscopy imaging to discriminate between processed pork, poultry and fish proteins. Chemom. Intell. Lab. Syst. 2018, 172, 90–99. [Google Scholar] [CrossRef]
- Zhao, H.-T.; Feng, Y.-Z.; Chen, W.; Jia, G.-F. Application of invasive weed optimization and least square support vector machine for prediction of beef adulteration with spoiled beef based on visible near-infrared (Vis-NIR) hyperspectral imaging. Meat Sci. 2019, 151, 75–81. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Zhuang, H.; Yoon, S.-C.; Yang, Y.; Zhao, X. Hyperspectral imaging for a rapid detection and visualization of duck meat adulteration in beef. Food Anal. Methods 2019, 12, 2205–2215. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, H.; Zhang, S.; Du, Y.; Sheng, Z.; Chu, Y.; Zhang, D.; Guo, L.; Deng, L. Visualization accuracy improvement of spectral quantitative analysis for meat adulteration using Gaussian distribution of regression coefficients in hyperspectral imaging. Optik 2020, 212, 164737. [Google Scholar] [CrossRef]
- Rady, A.; Adedeji, A.A. Application of Hyperspectral Imaging and Machine Learning Methods to Detect and Quantify Adulterants in Minced Meats. Food Anal. Methods 2020, 13, 970–981. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, F.; Shi, M. Rapid Identification and Visualization of Jowl Meat Adulteration in Pork Using Hyperspectral Imaging. Foods 2020, 9, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sarayreh, M.; Reis, M.M.; Yan, W.Q.; Klette, R. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat. Food Control 2020, 117, 107332. [Google Scholar] [CrossRef]
- Pu, H.; Kamruzzaman, M.; Sun, D.-W. Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods—A review. Trends Food Sci. Technol. 2015, 45, 86–104. [Google Scholar] [CrossRef]
- Fu, X.; Chen, J. A Review of Hyperspectral Imaging for Chicken Meat Safety and Quality Evaluation: Application, Hardware, and Software. Compr. Rev. Food Sci. Food Saf. 2019, 18, 535–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, P.; Fernández Pierna, J.A.; van Egmond, H.P.; Zegers, J.; Dardenne, P.; Baeten, V. Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals. Anal. Bioanal. Chem. 2013, 405, 7765–7772. [Google Scholar] [CrossRef]
- Ravikanth, L.; Singh, C.B.; Jayas, D.S.; White, N.D.G. Classification of contaminants from wheat using near-infrared hyperspectral imaging. Biosyst. Eng. 2015, 135, 73–86. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Henderson, K.; Paliwal, J. Discrimination of gluten-free oats from contaminants using near infrared hyperspectral imaging technique. Food Control 2017, 80, 197–203. [Google Scholar] [CrossRef]
- Vermeulen, P.; Suman, M.; Fernández Pierna, J.A.; Baeten, V. Discrimination between durum and common wheat kernels using near infrared hyperspectral imaging. J. Cereal Sci. 2018, 84, 74–82. [Google Scholar] [CrossRef]
- Badaró, A.; Morimitsu, F.; Ferreira, A.; Clerici, M.; Barbin, D. Identification of fiber added to semolina by near infrared (NIR) spectral techniques. Food Chem. 2019, 289. [Google Scholar] [CrossRef]
- Weng, S.; Tang, P.; Yuan, H.; Guo, B.; Yu, S.; Huang, L.; Xu, C. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 234, 118237. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Herrero-Langreo, A.; Roger, J.-M.; Gorretta, N.; Lleo, L.; Diezma, B.; Barreiro, P. Detection and quantification of peanut traces in wheat flour through NIR hyperspectral imaging spectroscopy using principal component analysis. J. Near Infrared Spectrosc. 2015, 23. [Google Scholar] [CrossRef]
- Mishra, P.; Cordella, C.B.Y.; Rutledge, D.N.; Barreiro, P.; Roger, J.M.; Diezma, B. Application of independent components analysis with the JADE algorithm and NIR hyperspectral imaging for revealing food adulteration. J. Food Eng. 2016, 168, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Wang, W.; Ni, X.; Chu, X.; Li, Y.-F.; Lu, C. Utilising near-infrared hyperspectral imaging to detect low-level peanut powder contamination of whole wheat flour. Biosyst. Eng. 2019, 184, 55–68. [Google Scholar] [CrossRef]
- Laborde, A.; Jaillais, B.; Roger, J.-M.; Metz, M.; Jouan-Rimbaud Bouveresse, D.; Eveleigh, L.; Cordella, C. Subpixel detection of peanut in wheat flour using a matched subspace detector algorithm and near-infrared hyperspectral imaging. Talanta 2020, 216, 120993. [Google Scholar] [CrossRef]
- Verdú, S.; Vásquez, F.; Grau, R.; Ivorra, E.; Sánchez, A.J.; Barat, J.M. Detection of adulterations with different grains in wheat products based on the hyperspectral image technique: The specific cases of flour and bread. Food Control 2016, 62, 373–380. [Google Scholar] [CrossRef]
- Su, W.-H.; Sun, D.-W. Facilitated wavelength selection and model development for rapid determination of the purity of organic spelt (Triticum spelta L.) flour using spectral imaging. Talanta 2016, 155, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Su, W.-H.; Sun, D.-W. Evaluation of spectral imaging for inspection of adulterants in terms of common wheat flour, cassava flour and corn flour in organic Avatar wheat (Triticum spp.) flour. J. Food Eng. 2017, 200, 59–69. [Google Scholar] [CrossRef]
- Shao, Y.; Xuan, G.; Hu, Z.; Gao, X. Identification of adulterated cooked millet flour with Hyperspectral Imaging Analysis. IFAC-PapersOnLine 2018, 51, 96–101. [Google Scholar] [CrossRef]
- Hussain, N.; Sun, D.-W.; Pu, H. Classical and emerging non-destructive technologies for safety and quality evaluation of cereals: A review of recent applications. Trends Food Sci. Technol. 2019, 91, 598–608. [Google Scholar] [CrossRef]
- Achata, E.M.; Esquerre, C.; Gowen, A.A.; O’Donnell, C.P. Feasibility of near infrared and Raman hyperspectral imaging combined with multivariate analysis to assess binary mixtures of food powders. Powder Technol. 2018, 336, 555–566. [Google Scholar] [CrossRef]
- Lohumi, S.; Lee, H.; Kim, M.S.; Qin, J.; Cho, B.-K. Raman hyperspectral imaging and spectral similarity analysis for quantitative detection of multiple adulterants in wheat flour. Biosyst. Eng. 2019, 181, 103–113. [Google Scholar] [CrossRef]
- Fu, X.; Chen, J.; Fu, F.; Wu, C. Discrimination of talcum powder and benzoyl peroxide in wheat flour by near-infrared hyperspectral imaging. Biosyst. Eng. 2020, 190, 120–130. [Google Scholar] [CrossRef]
- Blanch-Perez-del-Notario, C.; Saeys, W.; Lambrechts, A. Fast ingredient quantification in multigrain flour mixes using hyperspectral imaging. Food Control 2020, 107366. [Google Scholar] [CrossRef]
- Cheng, J.H.; Sun, D.W.; Zeng, X.A.; Liu, D. Recent advances in methods and techniques for freshness quality determination and evaluation of fish and fish fillets: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1012–1225. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, D.; He, Y.; Liu, F.; Sun, D.-W. Application of Visible and Near Infrared Hyperspectral Imaging to Differentiate Between Fresh and Frozen–Thawed Fish Fillets. Food Bioprocess Technol. 2013, 6, 2931–2937. [Google Scholar] [CrossRef]
- Khojastehnazhand, M.; Khoshtaghaza, M.H.; Mojaradi, B.; Rezaei, M.; Goodarzi, M.; Saeys, W. Comparison of Visible–Near Infrared and Short Wave Infrared hyperspectral imaging for the evaluation of rainbow trout freshness. Food Res. Int. 2014, 56, 25–34. [Google Scholar] [CrossRef]
- Qu, J.-H.; Cheng, J.-H.; Sun, D.-W.; Pu, H.; Wang, Q.-J.; Ma, J. Discrimination of shelled shrimp (Metapenaeus ensis) among fresh, frozen-thawed and cold-stored by hyperspectral imaging technique. LWT-Food Sci. Technol. 2015, 62, 202–209. [Google Scholar] [CrossRef]
- Dai, Q.; Cheng, J.-H.; Sun, D.-W.; Pu, H.; Zeng, X.-A.; Xiong, Z. Potential of visible/near-infrared hyperspectral imaging for rapid detection of freshness in unfrozen and frozen prawns. J. Food Eng. 2015, 149, 97–104. [Google Scholar] [CrossRef]
- Cheng, J.-H.; Sun, D.-W.; Pu, H.-B.; Chen, X.; Liu, Y.; Zhang, H.; Li, J.-L. Integration of classifiers analysis and hyperspectral imaging for rapid discrimination of fresh from cold-stored and frozen-thawed fish fillets. J. Food Eng. 2015, 161, 33–39. [Google Scholar] [CrossRef]
- Ivorra, E.; Girón, J.; Sánchez, A.J.; Verdú, S.; Barat, J.M.; Grau, R. Detection of expired vacuum-packed smoked salmon based on PLS-DA method using hyperspectral images. J. Food Eng. 2013, 117, 342–349. [Google Scholar] [CrossRef] [Green Version]
- Washburn, K.E.; Stormo, S.K.; Skjelvareid, M.H.; Heia, K. Non-invasive assessment of packaged cod freeze-thaw history by hyperspectral imaging. J. Food Eng. 2017, 205, 64–73. [Google Scholar] [CrossRef]
- Qin, J.; Vasefi, F.; Hellberg, R.S.; Akhbardeh, A.; Isaacs, R.B.; Yilmaz, A.G.; Hwang, C.; Baek, I.; Schmidt, W.F.; Kim, M.S. Detection of fish fillet substitution and mislabeling using multimode hyperspectral imaging techniques. Food Control 2020, 114, 107234. [Google Scholar] [CrossRef]
- Sun, D.; Weng, H.; He, X.; Li, L.; He, Y.; Cen, H. Combining near-infrared hyperspectral imaging with elemental and isotopic analysis to discriminate farm-raised pacific white shrimp from high-salinity and low-salinity environments. Food Chem. 2019, 299, 125121. [Google Scholar] [CrossRef]
- Saberioon, M.; Císař, P.; Labbé, L.; Souček, P.; Pelissier, P. Spectral imaging application to discriminate different diets of live rainbow trout (Oncorhynchus mykiss). Comput. Electron. Agric. 2019, 165, 104949. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W.; Pu, H.; Cheng, J.-H.; Wei, Q.-Y. Advanced Techniques for Hyperspectral Imaging in the Food Industry: Principles and Recent Applications. Annu. Rev. Anal. Chem. 2019, 10. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Ni, X.; Lawrence, K.C.; Zhuang, H.; Yoon, S.-C.; Gao, Z. Essential processing methods of hyperspectral images of agricultural and food products. Chemom. Intell. Lab. Syst. 2020, 198, 103936. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.-W.; Zeng, X.-A. Recent Advances in Wavelength Selection Techniques for Hyperspectral Image Processing in the Food Industry. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Pan, T.-T.; Sun, D.-W.; Cheng, J.-H.; Pu, H. Regression Algorithms in Hyperspectral Data Analysis for Meat Quality Detection and Evaluation. Compr. Rev. Food Sci. Food Saf. 2016, 15, 529–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, I.; Amigo, J.M. Chapter 2.8—An overview of regression methods in hyperspectral and multispectral imaging. In Data Handling in Science and Technology; Amigo, J.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 32, pp. 205–230. [Google Scholar]
- McGrath, T.F.; Haughey, S.A.; Patterson, J.; Fauhl-Hassek, C.; Donarski, J.; Alewijn, M.; van Ruth, S.; Elliott, C.T. What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?—Spectroscopy case study. Trends Food Sci. Technol. 2018, 76, 38–55. [Google Scholar] [CrossRef]
- Gonzalez, P.; Geelen, B.; Carolina, B.; Tack, K.; Lambrechts, A. A CMOS-compatible, monolithically integrated snapshot-mosaic multispectral imager. NIR News 2015, 26. [Google Scholar] [CrossRef]
- Geelen, B.; Tack, N.; Lambrechts, A. A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In Proceedings of the Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VII, San Francisco, CA, USA, 7 March 2014. [Google Scholar]
- Fu, Y.; Zheng, Y.; Zhang, L.; Zheng, Y.; Huang, H. Simultaneous hyperspectral image super-resolution and geometric alignment with a hybrid camera system. Neurocomputing 2020, 384, 282–294. [Google Scholar] [CrossRef]
- Reile, C.G.; Rodríguez, M.S.; Fernandes, D.D.d.S.; Gomes, A.d.A.; Diniz, P.H.G.D.; Di Anibal, C.V. Qualitative and quantitative analysis based on digital images to determine the adulteration of ketchup samples with Sudan I dye. Food Chem. 2020, 328, 127101. [Google Scholar] [CrossRef]
- Gonçalves Dias Diniz, P.H. Chemometrics-assisted color histogram-based analytical systems. J. Chemom. 2020, 34, 32–42. [Google Scholar] [CrossRef]
- Song, W.; Jiang, N.; Wang, H.; Vincent, J. Use of smartphone videos and pattern recognition for food authentication. Sens. Actuators B Chem. 2020, 304, 127247. [Google Scholar] [CrossRef]
- Izquierdo, M.; Lastra-Mejías, M.; González-Flores, E.; Pradana-López, S.; Cancilla, J.C.; Torrecilla, J.S. Visible imaging to convolutionally discern and authenticate varieties of rice and their derived flours. Food Control 2020, 110, 106971. [Google Scholar] [CrossRef]
- Xiong, Z.; Sun, D.-W.; Pu, H.; Zhu, Z.; Luo, M. Combination of spectra and texture data of hyperspectral imaging for differentiating between free-range and broiler chicken meats. LWT-Food Sci. Technol. 2015, 60, 649–655. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, C.; Qiu, Z.; He, Y. Information fusion of emerging non-destructive analytical techniques for food quality authentication: A survey. TRAC-Trend Anal. Chem. 2020, 127, 115901. [Google Scholar] [CrossRef]
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Wavelength Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Different roasting levels in green tea | 408–1117 | 762, 793, 838 | Local maximum weighing coefficients of PCA | No assignment | [20] |
Two different Sceletium species in herbal tea blends | 1000–2500 | 1874–2061, 2061–2248, 1436, 2123 | High weighted loadings of PCA | No assignment | [23] |
Green tea from different geographical origin | 967–1700 | 1381 | PSNR and SSIM | No assignment | [24] |
Classification of cocoa beans from different geographical origins | 400–1000 | 600–700 700–730, 870–910 770–830 | Loading values of PCA | Color Organ, compounds, Fatty acids Aminoacids | [28] |
Identification of coffee bean varieties | 874–1734 | 995, 1005, 1019 1129, 1139, 1210, 1214, 1241 1342, 1372, 1399 1409, 1440, 1443, 1460 1483 1500 1507, 1534 1609 1629 | Peaks and valleys with large differences in second derivative spectra | 2nd overtone of N-H stretch 2nd overtone of C-H stretch C-H vibrations Water 2nd overtone of O-H stretch CH2 stretching and nonstretching 1st overtone of N-H stretch 1st overtone of C-H stretch Aromatic C-H band | [26] |
Classification of Arabica and Robusta coffee species | 955–1700 | 1143 1446 1410 1420 1195–1225 | Loading vectors of PCA, PLS-DA, sPCA and sPLS-DA | C-H aromatic 2nd overtone C-H combination band O-H 1st overtone of aliphatic alcohol O-H 1st overtone of aromatic alcohol C-H aliphatic 2nd overtone | [25] |
Walnut shell and walnut meat differentiation | 425–775 | 456.5, 443, 429.5, 447.5, 438.5 | ICA based optimal band selection approach | No assignment | [31] |
Discriminating the origin of Ocimum basilicum L. | 900–1700 | 1450–1457, 1242–1254, 1380, 1696 | Beta coefficients of PLS-DA | Moisture, Lipid, Phenolic contents and Fatty acids | [33] |
Green pea adulteration in pistachio nut granules | 200–3700 cm−1 | 1441, 1655 cm−1 | Changes in band intensity | Lipid content | [32] |
Discriminating the floral origin of honey | 400–1000 | 425 | Loadings plot | Color | [7] |
Quality parameters of olive oil | 900–1700 | 1000–1160, 1280–1350, 1480–1500, 1570–1640 1210–1240, 1390–1430, 1630–1670 1206–1241, 1390–1440, 1447–1594, 1640–1660 | GA SPA SPA | Free acidity Peroxide index Moisture content | [35] |
Discrimination of olive fruits at different stages of maturation | 750–4000 cm−1 | 900–1200 1072 1034 1101 1513, 1606, 1626 1175, 1462, 1747, 1750 1395, 1582 | Loading vectors of PLS-DA | Pectic polysaccharides and hemicellulose Galactose Glucose Pectin Phenols Olive oil triglycerides Depolymerisation and de-esterification of cell wall polymers | [36] |
Discrimination of sesame oils | 900–1700 | 1149, 1442, 1673, 1693 | Beta coefficient of PLSDA model | Fatty acid composition | [37] |
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Wavelength Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Three Echinacea species in commercial products | 920–2514 | 1937–2400 | Loadings line plots of the first vector in PCA | No assignment | [44] |
Aristolochia fangchi in root powders of Stephania tetrandra | 920–2514 | 964–1474, 1323–1434 964–1322,1435–1474 | Trend Tool PCA Loadings plot PCA Loadings plot | No assignment Aristolochia fangchi Stephania tetrandra | [45] |
Adulteration of Ilicium verum with Illicium anisatum | 920–2514 | 1254–1342, 1737–1887, 2049–2179 1504–1530, 1905–1993, 2254–2297 | Loadings line plots | Illicium anisatum Ilicium verum | [43] |
Millet and buckwheat flour in black pepper | 1000–2498 | 1461, 1995, 1999, 2241, 2303, 2347 | Loadings line plots | Protein and oil content | [46] |
Papaya seeds in powders and berries of black pepper | 900–1700 | 1029, 1242, 1385, 1494, 1518, 1584, 1669 | Beta regression coefficients of PLSR | Phenols, flavonoids, quinines, starch in black pepper Fiber, protein, phenols, quinines in papaya seeds | [47] |
Pericarp, creamy spent, brown spent and shell in nutmeg | 400–1000 | 400–500, 650–850, 950–1000 | Visual inspection | No assignment | [48] |
Discriminating the origin of Zanthoxylum bungeanum | 380–1040 | Not specified. | CARS and VCPA | No assignment | [49] |
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Melamine in milk powder | 990–1700 | 1473.8 | Spectral similarity analysis | Melamine content | [51] |
Melamine in milk powder | 990–1700 | 1478.6, 1468.9 | Beta coefficients of PLSR | Melamine content | [52] |
Melamine in milk powder | 938–1654 | 1447, 1466 | Band ratio algorithm | Melamine content | [53] |
Starch in fresh cheese | 200–1000 | 928, 984 | Beta coefficients of PLSR | Water content | [54] |
Classification of commercial Cheddar cheeses from different brands | 950.35–1654.15 | 1190 1124 1268, 1271 1367, 1370 1235 1055, 1171 1364 1152, 1312 | Regression coefficients of PLSR | Fat content L* value a* value a* value Fat content, Enzyme treatment Protein and total saturated fatty acids Protein content, pH value L* value, Water holding capacity | [55] |
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Minced pork adulteration with minced pork jowl meat | 400–1000 | 440 491 545, 560, 570, 752 632 686 871 491, 632, 871 433, 450, 481, 558, 578, 594, 634, 661, 889, 948 | Loading lines of PCA 2D-COS Regression coefficients of PLSR | Deoxymyoglobin Metmyoglobin No assignment Sulfmyoglobin Redness Hydrocarbons No assignment No assignment | [71] |
Beef adulteration with duck meat | 400–1000 | 605, 676 948 505, 537, 576, 605, 636, 676, 948 | 2D-COS Loading lines of PCA | Red color Water content No assignment | [68] |
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Wavelength Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Peanut adulteration in wheat flour | 1000–2200 | 1200, 1395, 1734 1450, 1580, 1940, 2100 | Loadings plot of PCA | Higher content of long chain fatty acids Starch and water content | [81] |
Peanut adulteration in wheat flour | 1000–2200 | 1200, 1395, 1734 1580, 2100 1450, 1940 2030 | Independent Components of ICA | Higher content of long chain fatty acids Starch content Water content Amide content | [82] |
Peanut adulteration in wheat flour | 935.61–1720.23 | 1196, 1354, 1411, 1478, 1482, 1492, 1545 1200, 1203, 1242, 1245, 1249 | Loadings plot of PLSR | C-H 2nd overtone from CH3, C-H combination band from CH3, O-H 1st overtone from ROH in oil, N-H stretch 1st overtone from CONH2 and CONHR, O-H stretch 1st overtone in starch Protein and starch content | [83] |
Adulteration of organic spelt flour | 897–1753 | 1145, 1192, 1222, 1349, 1359, 1396, 1541, 1567 | Loading plot of StdDev coefficient resulting from FMCIA | No assignment | [86] |
Discrimination of oat from barley, wheat, and rye | 900–1700 | 1069, 1126, 1189, 1243, 1413 | VIP | No assignment | [77] |
Adulteration of cooked millet flour | 865–1711 | 935, 968, 1011, 1117, 1207, 1297, 1416, 1567 1084, 1130, 1207, 1230, 1330, 1426, 1552 1184, 1204, 1323, 1393, 1420, 1479, 1556 | PCA SPA CARS | No assignment | [88] |
Discrimination of durum wheat from common wheat | 1100–2400 | 1420, 1910;1702,2274;1979, 2054, 2199 1420, 1947; 1677, 2330; 1476, 2023, 2230; 2117 | Loadings plot of PLS-DA model on protein content Loadings plot of PLS-DA model on vitreousness | Water; Fat; Protein and Gluten content Water; Fat; Protein and Gluten; Starch content | [78] |
Prediction of corn flour content in icing sugar samples | 880–1720 | NIR-HSI 1391, 1419, 1426, 1454, 1482, 1503 Raman-HSI 164.3, 167, 169.7, 172.4, 459.3, 515.6, 551.2, 553.7, 579, 581.5, 599.1 | Ensemble Monte Carlo Variable Selection | No assignment | [90] |
Identification of fiber added to semolina | 928–2524 | Not specified. | Loadings plot of PCA | Water, Starch and Cellulose content | [79] |
Type of Adulteration | Spectral Range (nm) | Selected Wavelengths (nm) | Wavelength Selection Method | Assignment of the Wavelengths | Reference |
---|---|---|---|---|---|
Discrimination between fresh and frozen-thawed fish samples | 380–1030 | 729, 836, 970 928 512 and 620 | Savitzky–Golay 2nd derivative of absorbance data | Water content Lipid and Protein content Heme pigments | [95] |
Discrimination between fresh, cold stored and frozen-thawed shelled shrimp samples | 328–1115 | 500 800 416, 435, 452, 478, 639, 689, 783, 813 | Uninformative variable elimination (UVE)-SPA | Water content Astaxanthin content No assignment. | [97] |
Discrimination between fresh and soaked prawn samples in frozen and unfrozen states | 300–1100 | 420–460 530–580 950–1010 428, 504, 546, 556, 1000 | SPA of 1st derivative spectra | Astaxanthin content Metmyoglobin content Moisture content Wavelengths discriminating unfrozen-fresh versus unfrozen-soaked samples | [98] |
Discrimination between fresh, cold-stored and frozen-thawed grass carp fish fillets | 308–1105 | 560 970 446, 528, 541, 596, 660, 759, 970 | SPA of 1st derivative spectra | Astaxanthin and Canthaxanthin contents Water content Wavelengths discriminating fresh and stored samples | [99] |
Discrimination between shrimp samples from freshwater and seawater farms | 874–1734 | 918965 1605, 1612, 1700 1656 | Deep selection process applied with SPA, CARS, Random Frog (RF) and sequential forward selection (SFS) | 3rd overtones of functional groups C-H/N-H/O-H stretching of organic components 2nd overtone of ester C=O vibration 1st overtone of C-H and its de- formations of protein and glycogen 1st overtone of double bonds of vinyl groups (C=C) or aromatic rings of C-H stretching (Flavor difference) | [103] |
Discrimination of live rainbow trout that are on different diets | 393–1009 | 450–750 900–1000 | Visual inspection | Lipid source influences the absorption and deposition of carotenoids | [104] |
Differentiation of fish species and determination of fish freshness | VIS-NIR 419–1007 nm SWIR 842–2532 nm Fluorescence 718–84 2 nm Raman 103–2831 cm−1 | VIS-NIR 546, 560, 578 VIS-NIR 636 SWIR 984 SWIR 1208 Fluorescence ~470, 500, 530, 560, 590, 620, 650, 680, 700 Raman 487, 636, 734, 1097, 1311, 1451, 1651, 2305, 800–1000 | PCA | VIS-NIR Hemepigments VIS-NIR Methemoglobin SWIR water content SWIR fat content Fluorescence protein–protein interactions, Collagen structures Raman unsaturated lipid composition | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temiz, H.T.; Ulaş, B. A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration. Photochem 2021, 1, 125-146. https://doi.org/10.3390/photochem1020008
Temiz HT, Ulaş B. A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration. Photochem. 2021; 1(2):125-146. https://doi.org/10.3390/photochem1020008
Chicago/Turabian StyleTemiz, Havva Tümay, and Berdan Ulaş. 2021. "A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration" Photochem 1, no. 2: 125-146. https://doi.org/10.3390/photochem1020008
APA StyleTemiz, H. T., & Ulaş, B. (2021). A Review of Recent Studies Employing Hyperspectral Imaging for the Determination of Food Adulteration. Photochem, 1(2), 125-146. https://doi.org/10.3390/photochem1020008