Photocatalytic Decomposition of Nitrobenzene in Aqueous Solution by Ag/Cu2O Assisted with Persulfate under Visible Light Irradiation
Abstract
:1. Introduction
2. Experimental Methods
2.1. Testing of Photocatalytic Oxidation of Nitrobenzene by Ag/Cu2O with Assistance of Persulfate
2.2. Total Organic Carbon (TOC) Analysis
2.3. Physicochemical Properties of Ag/Cu2O
2.4. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.5. Scavenging Effects
3. Results and Discussion
3.1. Comparison of Photocatalytic Oxidation by Ag/Cu2O Alone and Ag/Cu2O Assisted with Persulfate Respectively
- (1)
- Ag/Cu2O + hυ → h+vb + e−cb
- (2)
- S2O82− + e−cb → SO4•− + SO42−
- (3)
- SO42- + h+vb → SO4•−
- (4)
- H2O + h+vb → HO• + H+
3.2. Physicochemical Properties of Ag/Cu2O
3.3. Effect of Scavenger Dosages on Photocatalytic Oxidation by Ag/Cu2O Assisted with Persulfate
3.4. Effect of Persulfate Concentrations on Photocatalytic Oxidation by Ag/Cu2O Assisted with Persulfate
3.5. Effect of Ag/Cu2O Dosage on Photocatalytic Oxidation by Ag/Cu2O Assisted with Persulfate
3.6. Reaction Pathways of Photocatalytic Oxidation of Nitrobenzene by Ag/Cu2O Assisted with Persulfate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weissermel, K.; Arpe, H.-J. Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed.; VCH: Weinheim, Germany, 1991; Volume A17. [Google Scholar]
- Holder, J.W. Nitrobenzene carcinogenicity in animals and human hazard evaluation. Toxicol. Ind. Health 1999, 15, 445–457. [Google Scholar]
- Wang, G.X.; Zhang, X.Y.; Yao, C.Z.; Tian, M.Z. Acute toxicity and mutagenesis of three metabolites mixture of nitrobenzene in mice. Toxicol. Ind. Health 2011, 27, 167–171. [Google Scholar] [CrossRef]
- Zhu, L.; Ma, B.; Zhang, L. The study of distribution and fate of nitrobenzene in a water/sediment microcosm. Chemosphere 2007, 69, 1579–1585. [Google Scholar] [CrossRef]
- Carlos, L.; Nichela, D.; Triszcz, J.M.; Felice, J.I.; Einschlag, F.S.G. Nitration of nitrobenzene in Fenton’s processes. Chemosphere 2010, 80, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.C.; Lu, Z.Y.; Liu, F.Q.; Li, A.M.; Dai, J.J.; Xu, L.; Chu, L.M. Inhibiting 1,3-dinitrobenzene formation in Fenton oxidation of nitrobenzene through a controllable reductive pretreatment with zero-valent iron. Chem. Eng. J. 2011, 174, 258–265. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Dai, C.; Zhou, X.; Si, H. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chem. Eng. J. 2014, 244, 438–445. [Google Scholar] [CrossRef]
- Nichela, D.A.; Berkovic, A.M.; Costante, M.R.; Juliarena, M.P.; Einschlag, F.S.G. Nitrobenzene degradation in Fenton-like systems using Cu(II) as catalyst. Comparison between Cu(II)- and Fe(III)-based systems. Chem. Eng. J. 2013, 228, 1148–1157. [Google Scholar] [CrossRef]
- Duan, H.; Liu, Y.; Yin, X.; Bai, J.; Qi, J. Degradation of nitrobenzene by Fenton-like reaction in a H2O2/schwertmannite system. Chem. Eng. J. 2016, 283, 873–879. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Z.; Tian, P.; Sheng, Y.; Xu, J.; Han, Y.F. Oxidative degradation of nitrobenzene by a Fenton-like reaction with Fe-Cu bimetallic catalysts. Appl. Catal. B Environ. 2019, 244, 1–10. [Google Scholar] [CrossRef]
- Elshafei, G.M.S.; Yehia, F.Z.; Dimitry, O.I.H.; Badawi, A.M.; Eshaq, G. Ultrasonic assisted-Fenton-like degradation of nitrobenzene at neutral pH using nanosized oxide of Fe and Cu. Ultrason. Sonochem. 2014, 21, 1358–1365. [Google Scholar] [CrossRef]
- Anotai, J.; Sakulkittimasak, P.; Boonrattanakij, N.; Lu, M.C. Kinetics of nitrobenzene oxidation and iron crystallization in fluidized-bed Fenton process. J. Hazard. Mater. 2009, 165, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Ratanatamskul, C.; Chintitanun, S.; Masomboon, N.; Lu, M.C. Inhibitory effect of inorganic ions on nitrobenzene oxidation by fluidized-bed Fenton process. J. Mol. Catal. A Chem. 2010, 331, 101–105. [Google Scholar] [CrossRef]
- Nitoi, I.; Oancea, P.; Raileanu, M.; Crisan, M.; Constantin, L.; Cristea, I. UV-VIS photocatalytic degradation of nitrobenzene from water using heavy metal doped titania. J. Ind. Eng. Chem. 2015, 21, 677–682. [Google Scholar] [CrossRef]
- Shen, X.Z.; Liu, Z.C.; Xie, S.M.; Guo, J. Degradation of nitrobenzene using titania photocatalysts co-doped with nitrogen and cerium under visible light illumination. J. Hazard. Mater. 2009, 162, 1193–1198. [Google Scholar] [CrossRef]
- Tayade, R.J.; Bajaj, H.C.; Jasra, R.V. Photocatalytic removal of organic contaminants from water exploiting tuned band gap photocatalysts. Desalination 2011, 275, 160–165. [Google Scholar] [CrossRef]
- Weavers, L.K.; Liang, F.H.; Hoffmann, M.R. Aromatic compound degradation in water using a combination of sonolysis and ozonolysis. Environ. Sci. Technol. 1998, 32, 2727–2733. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, W.; Ma, J.; Wen, G.; Liu, Q. Relationship between acceleration of hydroxyl radical initiation and increase of multiple-ultrasonic field amount in the process of ultrasound catalytic ozonation for degradation of nitrobenzene in aqueous solution. Ultrason. Sonochem. 2015, 22, 198–204. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.Z.; Zhai, X.D. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Appl. Catal. B Environ. 2008, 83, 256–264. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, J.; Sun, Z.Z.; Liu, H. Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. J. Hazard. Mater. 2009, 167, 1119–1125. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Liu, W.; Tu, Y.; Zhang, Y.; Han, W.; Wang, L. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 2014, 113, 48–55. [Google Scholar] [CrossRef]
- Xia, K.; Xie, F.; Ma, Y. Degradation of nitrobenzene in aqueous solution by dual-pulse ultrasound enhanced electrochemical process. Ultrason. Sonochem. 2014, 21, 549–553. [Google Scholar] [CrossRef]
- Ji, Y.; Shi, Y.; Wang, L.; Lu, J. Denitration and renitration processes in sulfate radical-mediated degradation of nitrobenzene. Chem. Eng. J. 2017, 315, 591–597. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, L.; Sun, N.; Lan, Y. Degradation of nitrobenzene by sodium persulfate activated with zero-valent zinc in the presence of low frequency ultrasound. J. Taiwan Inst. Chem. Eng. 2017, 78, 137–143. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, M.; Li, X.; Xu, L.; Tang, Z.; Sheng, X.; Li, B. Highly efficient persulfate oxidation process activated with pre-magnetization Fe0. Chem. Eng. J. 2017, 318, 50–56. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Pan, Y.; Xu, L.; Zhou, M. Pre-magnetized Fe0 activated persulphate for the degradation of nitrobenzene in groundwater. Sep. Purif. Technol. 2019, 212, 555–562. [Google Scholar] [CrossRef]
- De Luca, A.; He, X.; Dionysiou, D.D.; Dantas, R.F.; Esplugas, S. Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate. Chem. Eng. J. 2017, 318, 206–213. [Google Scholar] [CrossRef]
- Chen, W.S.; Shih, Y.C. Mineralization of aniline in aqueous solution by sono-activated peroxydisulfate enhanced with PbO semiconductor. Chemosphere 2020, 239, 124686. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, B.; Wang, Z.; Guo, M.; Qin, X.; Zhang, X.; Wang, P.; Dai, Y. Crystal faces of Cu2O and their stabilities in photocatalytic reactions. J. Phys. Chem. C 2009, 113, 14448–14453. [Google Scholar] [CrossRef]
- Su, Y.; Li, H.; Ma, H.; Robertson, J.; Nathan, A. Controlling surface termination and facet orientation in Cu2O nanoparticles for high photocatalytic activity: A combined experimental and DFT study. ACS Appl. Mater. Interfaces 2017, 9, 8100–8106. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Liu, X.; Xiao, M.; Huang, Z.; Tan, X. Effect of particle size and morphology on surface thermodynamics and photocatalytic thermodynamics of nano-Cu2O. J. Environ. Chem. Eng. 2017, 5, 4447–4453. [Google Scholar] [CrossRef]
- Chu, C.Y.; Huang, M.H. Facet-dependent photocatalytic properties of Cu2O crystals probed by electron, hole and radical scavengers. J. Mater. Chem. A 2017, 5, 15116–15123. [Google Scholar] [CrossRef]
- Chen, W.S.; Huang, S.L. Photocatalytic degradation of bisphenol-A in aqueous solution by calcined PbO semiconductor irradiated with visible light. Desalin. Water Treat. 2020, 190, 147–155. [Google Scholar] [CrossRef]
- He, S.L.; Wang, L.P.; Zhang, J.; Hou, M.F. Fenton pre-treatment of wastewater containing nitrobenzene using ORP for indicating the endpoint of reaction. Procedia Earth Planet. Sci. 2009, 1, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Satdeve, N.S.; Ugwekar, R.P.; Bhanvase, B.A. Ultrasound assisted preparation and characterization of Ag supported on ZnO nanoparticles for visible light degradation of methylene blue dye. J. Mol. Liq. 2019, 291, 111313. [Google Scholar] [CrossRef]
- Chen, W.S.; Huang, C.P. Mineralization of aniline in aqueous solution by electro-activated persulfate oxidation enhanced with ultrasound. Chem. Eng. J. 2015, 266, 279–288. [Google Scholar] [CrossRef]
- Liang, C.J.; Su, H.W. Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Lin, H.; Wu, J.; Zhang, H. Degradation of bisphenol A in aqueous solution by a novel electro/ Fe3+/ peroxydisulfate process. Sep. Purif. Technol. 2013, 117, 18–23. [Google Scholar] [CrossRef]
- Wang, B.; Fu, T.; An, B.; Liu, Y. UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep. Purif. Technol. 2020, 251, 117321. [Google Scholar] [CrossRef]
- Xi, Q.; Gao, G.; Jin, M.; Zhang, Y.; Zhou, H.; Wu, C.; Zhao, Y.; Wang, L.; Guo, P.; Xu, J. Design of graphitic carbon nitride supported Ag-Cu2O composites with hierarchical structures for enhanced photocatalytic properties. Appl. Surf. Sci. 2019, 471, 714–725. [Google Scholar] [CrossRef]
- Sakar, M.; Balakumar, S. Reverse Ostwald ripening process induced dispersion of Cu2O nanoparticles in silver-matrix and their interfacial mechanism mediated sunlight driven photocatalytic properties. J. Photochem. Photobiol. A Chem. 2018, 356, 150–158. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Wang, Y.; Zhang, J.; Han, X.; Chen, Y.; Wang, Y.; Karim, Z.; Hu, W.; Deng, Y. Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts. J. Mater. Sci. Technol. 2021, 62, 119–127. [Google Scholar] [CrossRef]
- Chen, L.; Guo, S.; Dong, L.; Zhang, F.; Gao, R.; Liu, Y.; Wang, Y.; Zhang, Y. SERS effect on the presence and absence of rGO for Ag@Cu2O core-shell. Mater. Sci. Semicond. Process. 2019, 91, 290–295. [Google Scholar] [CrossRef]
- Sharma, K.; Maiti, K.; Kim, N.H.; Hui, D.; Lee, J.H. Green synthesis of glucose-reduced graphene oxide supported Ag-Cu2O nanocomposites for the enhanced visible-light photocatalytic activity. Compos. Part. B 2018, 138, 35–44. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Poulston, S.; Parlett, P.M.; Stone, P.; Bowker, M. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf. Interface Anal. 1996, 24, 811–820. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, X.; Zeng, H.; Wang, Y.; Qiao, M.; Guan, W. Enhancement of photoelectrocatalytic degradation of diclofenac with persulfate activated by Cu cathode. Chem. Eng. J. 2017, 320, 168–177. [Google Scholar] [CrossRef]
- Liu, X.; Chen, J.; Liu, P.; Zhang, H.; Li, G.; An, T.; Zhao, H. Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Appl. Catal. A Gen. 2016, 521, 34–41. [Google Scholar] [CrossRef]
- Kumar, S.; Parlett, C.M.A.; Isaacs, M.A.; Jowett, D.V.; Douthwaite, R.E.; Cockett, M.C.R.; Lee, A.F. Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts. Appl. Catal. B Environ. 2016, 189, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Anbu, P.; Gopinath, S.C.B.; Yun, H.S.; Lee, C.-G. Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J. Mol. Struct. 2019, 1177, 302–309. [Google Scholar] [CrossRef]
- Han, Z.; Ren, L.; Cui, Z.; Chen, C.; Pan, H.; Chen, J. Ag/ZnO flower heterostructures as a visible-light driven photocatalyst via surface plasmon resonance. Appl. Catal. B Environ. 2012, 126, 298–305. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci. 2017, 391, 476–483. [Google Scholar] [CrossRef]
- Maji, S.K.; Mukherjee, N.; Dutta, A.K.; Srivastava, D.N.; Paul, P.; Karmakar, B.; Mondal, A.; Adhikary, B. Deposition of nanocrystalline CuS thin film from a single precursor: Structural, optical and electrical properties. Mater. Chem. Phys. 2011, 130, 392–397. [Google Scholar] [CrossRef]
- Štengl, V.; Grygar, T.M. The simplest way to Iodine-doped anatase for photocatalysts activated by visible light. Int. J. Photoenergy 2011, 2011, 685935. [Google Scholar] [CrossRef]
- Kamaraj, E.; Somasundaram, S.; Balasubramani, K.; Eswaran, M.P.; Muthuramalingam, R.; Park, S. Facile fabrication of CuO-Pb2O3 nanophotocatalysts for efficient degradation of Rose Bengal dye under visible light irradiation. Appl. Surf. Sci. 2018, 433, 206–212. [Google Scholar] [CrossRef]
- Muthukumaran, M.; Niranjani, S.; Samuel Barnabas, K.; Narayanan, V.; Raju, T.; Venkatachalam, K. Green route synthesis and characterization of cuprous oxide (Cu2O): Visible light irradiation photocatalytic activity of MB dye. Mater. Today Proc. 2019, 14, 563–568. [Google Scholar] [CrossRef]
- Neta, P.; Huie, R.E.; Ross, A.B. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Chem. Ref. Data 1988, 17, 1027–1284. [Google Scholar] [CrossRef]
- Hou, L.W.; Zhang, H.; Xue, X.F. Ultrasound enhanced heterogeneous activation of peroxydisulfate by magnetite catalyst for the degradation of tetracycline in water. Sep. Purif. Technol. 2012, 84, 147–152. [Google Scholar] [CrossRef]
- Jyothi, K.P.; Yesodharan, S.; Yesodharan, E.P. Ultrasound (US), ultraviolet light (UV) and combination (US + UV) assisted semiconductor catalysed degradation of organic pollutants in water: Oscillation in the concentration of hydrogen peroxide formed in situ. Ultrason. Sonochem. 2014, 21, 1787–1796. [Google Scholar] [CrossRef] [PubMed]
- Anipsitakis, G.P.; Dionysiou, D.D.; Gonzalez, M.A. Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds Implications of chlorine ions. Environ. Sci. Technol. 2006, 40, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xiao, J.; Xiao, D.; Guo, Y.; Fang, C.; Lou, X.; Wang, Z.; Liu, J. Transformations of chloro and nitro groups during the peroxymonosulfate-based oxidation of 4-chloro-2-nitrophenol. Chem. Eng. J. 2015, 134, 446–451. [Google Scholar] [CrossRef]
Semiconductor | Ag(wt%) | Cu(wt%) | O(wt%) |
---|---|---|---|
Cu2O | 0.00 | 85.81 | 14.19 |
Ag(1 wt%)/Cu2O | 1.15 | 87.41 | 11.44 |
Ag(2 wt%)/Cu2O | 2.05 | 87.56 | 10.39 |
Ag(3 wt%)/Cu2O | 3.56 | 84.32 | 12.12 |
Ag(4 wt%)/Cu2O | 4.99 | 82.39 | 12.62 |
Ag(5 wt%)/Cu2O | 6.84 | 80.67 | 12.49 |
Semiconductor | Band Gap Energy (eV) |
---|---|
Cu2O | 2.17 |
Ag(1 wt%)/Cu2O | 2.06 |
Ag(2 wt%)/Cu2O | 1.92 |
Ag(3 wt%)/Cu2O | 1.75 |
Ag(4 wt%)/Cu2O | 1.55 |
Ag(5 wt%)/Cu2O | 1.43 |
Component | m/z (Relative Abundance, %) |
---|---|
Feedstock | |
Nitrobenzene | 50 (15.7), 51 (37.7), 65 (13.6), 74 (9.0), 77 (100), 78 (7.5), 93 (16.9), 123(70.2) |
Reaction intermediate | |
Phenol 2-Nitrophenol | 38 (5.4), 39 (12.5), 40 (6.9), 55(6.4), 63 (6.5), 65 (21.0), 66 (27.4), 94 (100), 95 (7.7) 39 (15.7), 53 (9.8), 63 (20.2), 64 (13.9), 65 (25.5), 81 (19.6), 109 (18.2), 139 (100) |
3-Nitrophenol | 39 (35.9), 53 (10.7), 63 (14.7), 64 (7.9), 65 (63.7), 81 (15.8), 93 (51.4), 139 (100) |
4-Nitrophenol | 39 (44.2), 53 (23.3), 63 (28.1), 65 (79.9), 81 (33.0), 93 (26.9), 109 (67.1), 139 (100) |
Hydroquinone | 39 (6.9), 53 (14.4), 54 (12.9), 55 (10.5), 81 (25.3), 82 (12.3), 110 (100), 143 (9.6) |
p-Benzoquinone | 26 (18.1), 52 (17.9), 53 (17.1), 54 (63.3), 80 (28.2), 82 (36.3), 108 (100), 110 (12.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.-S.; Chen, J.-Y. Photocatalytic Decomposition of Nitrobenzene in Aqueous Solution by Ag/Cu2O Assisted with Persulfate under Visible Light Irradiation. Photochem 2021, 1, 220-236. https://doi.org/10.3390/photochem1020013
Chen W-S, Chen J-Y. Photocatalytic Decomposition of Nitrobenzene in Aqueous Solution by Ag/Cu2O Assisted with Persulfate under Visible Light Irradiation. Photochem. 2021; 1(2):220-236. https://doi.org/10.3390/photochem1020013
Chicago/Turabian StyleChen, Wen-Shing, and Jyun-Yang Chen. 2021. "Photocatalytic Decomposition of Nitrobenzene in Aqueous Solution by Ag/Cu2O Assisted with Persulfate under Visible Light Irradiation" Photochem 1, no. 2: 220-236. https://doi.org/10.3390/photochem1020013
APA StyleChen, W. -S., & Chen, J. -Y. (2021). Photocatalytic Decomposition of Nitrobenzene in Aqueous Solution by Ag/Cu2O Assisted with Persulfate under Visible Light Irradiation. Photochem, 1(2), 220-236. https://doi.org/10.3390/photochem1020013