Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data †
Abstract
1. Introduction
2. Computational Methods
3. Results and Discussion
3.1. Photophysical Properties
meso-BODIPY | (nm) | f | (nm) | Φ | ||
---|---|---|---|---|---|---|
exp | calc | exp | calc | |||
Phe | 501 (498) a | 414 | 0.539 | 505 (508) a | 426 | 0.56 (0.65) a |
2Py | 502 b | 416 | 0.542 | 514 b | 441 | 0.04 b |
3Py | 502 b | 416 | 0.542 | 514 b | 429 | 0.43 b |
4Py | 501 b | 415 | 0.543 | 515 b | 428 | 0.31 b |
PheCl | 434 | 0.508 | 437 | |||
2PyCl | 424 | 0.552 | 446 | |||
3PyCl | 424 | 0.551 | 441 | |||
4PyCl | 423 | 0.551 | 443 | |||
PheCl2 | 430 | 0.561 | 447 | |||
2PyCl2 | 530 b | 432 | 0.565 | 545 b | 455 | 0.17 b |
3PyCl2 | 527 b | 432 | 0.565 | 542 b | 452 | 0.58 b |
4PyCl2 | 528 b | 432 | 0.566 | 546 b | 454 | 0.58 b |
PheNO2 | 405 | 0.659 | 425 | |||
2PyNO2 | 491 c | 408 | 0.655 | 509 c | 436 | 0.05 c |
3PyNO2 | 491 c | 407 | 0.656 | 507 c | 429 | 0.25 c |
4PyNO2 | 490 c | 406 | 0.660 | 508 c | 431 | 0.26 c |
Phe(NO2)2 | 409 | 0.677 | 434 | |||
2Py(NO2)2 | 413 | 0.673 | 443 | 0.13 | ||
3Py(NO2)2 | 412 | 0.675 | 438 | 0.28 | ||
4Py(NO2)2 | 412 | 0.676 | 440 | 0.36 | ||
PheCO2Me | 410 | 0.658 | 427 | |||
2PyCO2Me | 413 | 0.658 | 441 | 0.21 | ||
3PyCO2Me | 413 | 0.659 | 431 | 0.61 | ||
4PyCO2Me | 412 | 0.661 | 435 | 0.39 | ||
Phe(CO2Me)2 | 410 | 0.791 | 426 | |||
2Py(CO2Me)2 | 501 c | 413 | 0.797 | 515 c | 436 | 0.09 |
3Py(CO2Me)2 | 501 b | 413 | 0.793 | 512 c | 430 | 0.61 |
4Py(CO2Me)2 | 500 b | 412 | 0.794 | 510 c | 434 | 0.43 |
PheCF3 | 407 | 0.594 | 425 | |||
2PyCF3 | 409 | 0.596 | 437 | |||
3PyCF3 | 409 | 0.597 | 429 | |||
4PyCF3 | 408 | 0.599 | 432 | |||
Phe(CF3)2 | 404 | 0.6605 | 424 | |||
2Py(CF3)2 | 406 | 0.6639 | 434 | |||
3Py(CF3)2 | 406 | 0.6645 | 428 | |||
4Py(CF3)2 | 406 | 0.667 | 418 |
3.2. Electron-Density-Related Properties of the Ground and Excited States
3.3. Rotational Barrier in the Excited States
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loudet, A.; Burgess, K. BODIPY Dyes and Their Derivatives: Syntheses and Spectroscopic Properties. Chem. Rev. 2007, 107, 4891–4932. [Google Scholar] [CrossRef] [PubMed]
- Krumova, K.; Cosa, G. Bodipy Dyes with Tunable Redox Potentials and Functional Groups for Further Tethering: Preparation, Electrochemical, and Spectroscopic Characterization. J. Am. Chem. Soc. 2010, 132, 17560–17569. [Google Scholar] [CrossRef] [PubMed]
- Mula, S.; Ray, A.K.; Banerjee, M.; Chaudhuri, T.; Dasgupta, K.; Chattopadhyay, S. Design and Development of a New Pyrromethene Dye with Improved Photostability and Lasing Efficiency: Theoretical Rationalization of Photophysical and Photochemical Properties. J. Org. Chem. 2008, 73, 2146–2154. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, G.; Ziessel, R.; Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed. Angew. Chem. Int. Ed. 2008, 47, 1184–1201. [Google Scholar] [CrossRef]
- Bañuelos, J. BODIPY Dye, the Most Versatile Fluorophore Ever? Chem. Rec. 2016, 16, 335–348. [Google Scholar] [CrossRef]
- Poddar, M.; Misra, R. Recent Advances of BODIPY Based Derivatives for Optoelectronic Applications. Coord. Chem. Rev. 2020, 421, 213462. [Google Scholar] [CrossRef]
- Hendricks, J.A.; Keliher, E.J.; Wan, D.; Hilderbrand, S.A.; Weissleder, R.; Mazitschek, R. Synthesis of [18F]BODIPY: Bifunctional Reporter for Hybrid Optical/Positron Emission Tomography Imaging. Angew. Chem. Int. Ed. 2012, 51, 4603–4606. [Google Scholar] [CrossRef]
- Yu, C.; Wu, Q.; Wang, J.; Wei, Y.; Hao, E.; Jiao, L. Red to Near-Infrared Isoindole BODIPY Fluorophores: Synthesis, Crystal Structures, and Spectroscopic and Electrochemical Properties. J. Org. Chem. 2016, 81, 3761–3770. [Google Scholar] [CrossRef]
- Zhao, N.; Williams, T.M.; Zhou, Z.; Fronczek, F.R.; Sibrian-Vazquez, M.; Jois, S.D.; Vicente, M.G.H. Synthesis of BODIPY-Peptide Conjugates for Fluorescence Labeling of EGFR Overexpressing Cells. Bioconjug. Chem. 2017, 28, 1566–1579. [Google Scholar] [CrossRef]
- Zhao, N.; Xuan, S.; Zhou, Z.; Fronczek, F.R.; Smith, K.M.; Vicente, M.G.H. Synthesis and Spectroscopic and Cellular Properties of Near-IR [a]Phenanthrene-Fused 4,4-Difluoro-4-Bora-3a,4a-Diaza-s-Indacenes. J. Org. Chem. 2017, 82, 9744–9750. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Akkaya, E.U. Toward Singlet Oxygen Delivery at a Measured Rate: A Self-Reporting Photosensitizer. Org. Lett. 2014, 16, 2946–2949. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, J.H.; Zhou, Z.; Kessel, D.; Fronczek, F.R.; Pakhomova, S.; Vicente, M.G.H. Synthesis, Spectroscopic, and in Vitro Investigations of 2,6-Diiodo-BODIPYs with PDT and Bioimaging Applications. J. Photochem. Photobiol. B 2015, 145, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Mao, Z.; Kim, J.H.; Lee, J.; Xiong, H.; Zhang, F.; Kim, J.S. Engineering of BODIPY-Based Theranostics for Cancer Therapy. Coord. Chem. Rev. 2023, 476, 214908. [Google Scholar] [CrossRef]
- Amendoeira, A.F.; Luz, A.; Valente, R.; Roma-Rodrigues, C.; Ali, H.; Van Lier, J.E.; Marques, F.; Baptista, P.V.; Fernandes, A.R. Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes. Int. J. Mol. Sci. 2023, 24, 3600. [Google Scholar] [CrossRef]
- Kaufman, N.E.M.; Meng, Q.; Griffin, K.E.; Singh, S.S.; Dahal, A.; Zhou, Z.; Fronczek, F.R.; Mathis, J.M.; Jois, S.D.; Vicente, M.G.H. Synthesis, Characterization, and Evaluation of Near-IR Boron Dipyrromethene Bioconjugates for Labeling of Adenocarcinomas by Selectively Targeting the Epidermal Growth Factor Receptor. J. Med. Chem. 2019, 62, 3323–3335. [Google Scholar] [CrossRef]
- Xu, K.; Zhao, J.; Cui, X.; Ma, J. Photoswitching of Triplet–Triplet Annihilation Upconversion Showing Large Emission Shifts Using a Photochromic Fluorescent Dithienylethene-Bodipy Triad as a Triplet Acceptor/Emitter. Chem. Commun. 2015, 51, 1803–1806. [Google Scholar] [CrossRef]
- Ma, J.; Cui, X.; Wang, F.; Wu, X.; Zhao, J.; Li, X. Photoswitching of the Triplet Excited State of DiiodoBodipy-Dithienylethene Triads and Application in Photo-Controllable Triplet–Triplet Annihilation Upconversion. J. Org. Chem. 2014, 79, 10855–10866. [Google Scholar] [CrossRef]
- Ray, C.; Schad, C.; Moreno, F.; Maroto, B.L.; Bañuelos, J.; Arbeloa, T.; García-Moreno, I.; Villafuerte, C.; Muller, G.; De La Moya, S. BCl3-Activated Synthesis of COO-BODIPY Laser Dyes: General Scope and High Yields under Mild Conditions. J. Org. Chem. 2020, 85, 4594–4601. [Google Scholar] [CrossRef]
- Waddell, P.G.; Liu, X.; Zhao, T.; Cole, J.M. Rationalizing the Photophysical Properties of BODIPY Laser Dyes via Aromaticity and Electron-Donor-Based Structural Perturbations. Dyes Pigments 2015, 116, 74–81. [Google Scholar] [CrossRef]
- Ortiz, M.J.; Garcia-Moreno, I.; Agarrabeitia, A.R.; Duran-Sampedro, G.; Costela, A.; Sastre, R.; Arbeloa, F.L.; Prieto, J.B.; Arbeloa, I.L. Red-Edge-Wavelength Finely-Tunable Laser Action from New BODIPY Dyes. Phys. Chem. Chem. Phys. 2010, 12, 7804–7811. [Google Scholar] [CrossRef]
- Gómez-Durán, C.F.A.; Esnal, I.; Valois-Escamilla, I.; Urías-Benavides, A.; Bañuelos, J.; López Arbeloa, I.; García-Moreno, I.; Peña-Cabrera, E. Near-IR BODIPY Dyes à La Carte—Programmed Orthogonal Functionalization of Rationally Designed Building Blocks. Chem.–Eur. J. 2016, 22, 1048–1061. [Google Scholar] [CrossRef] [PubMed]
- Humbert-Droz, M.; Piguet, C.; Wesolowski, T.A. Fluorescence Quantum Yield Rationalized by the Magnitude of the Charge Transfer in π-Conjugated Terpyridine Derivatives. Phys. Chem. Chem. Phys. 2016, 18, 29387–29394. [Google Scholar] [CrossRef] [PubMed]
- LaMaster, D.J.; Kaufman, N.E.M.; Bruner, A.S.; Vicente, M.G.H. Structure Based Modulation of Electron Dynamics in Meso-(4-Pyridyl)-BODIPYs: A Computational and Synthetic Approach. J. Phys. Chem. A 2018, 122, 6372–6380. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Maki, T. Ratiometric Fluorescence Acid Probes Based on a Tetrad Structure Including a Single BODIPY Chromophore. J. Org. Chem. 2021, 86, 17560–17566. [Google Scholar] [CrossRef]
- Ndung’u, C.; LaMaster, D.J.; Dhingra, S.; Mitchell, N.H.; Bobadova-Parvanova, P.; Fronczek, F.R.; Elgrishi, N.; Vicente, M.d.G.H. A Comparison of the Photophysical, Electrochemical and Cytotoxic Properties of Meso-(2-, 3- and 4-Pyridyl)-BODIPYs and Their Derivatives. Sensors 2022, 22, 5121. [Google Scholar] [CrossRef]
- Ndung’U, C.; Bobadova-Parvanova, P.; LaMaster, D.J.; Goliber, D.; Fronczek, F.R.; Vicente, M.d.G.H. 8(Meso)-Pyridyl-BODIPYs: Effects of 2,6-Substitution with Electron-Withdrawing Nitro, Chloro, and Methoxycarbonyl Groups. Molecules 2023, 28, 4581. [Google Scholar] [CrossRef]
- Yanai, T.; Tew, D.P.; Handy, N.C. A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- Bauernschmitt, R.; Ahlrichs, R. Treatment of Electronic Excitations within the Adiabatic Approximation of Time Dependent Density Functional Theory. Chem. Phys. Lett. 1996, 256, 454–464. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- Silva-Junior, M.R.; Schreiber, M.; Sauer, S.P.A.; Thiel, W. Benchmarks for Electronically Excited States: Time-Dependent Density Functional Theory and Density Functional Theory Based Multireference Configuration Interaction. J. Chem. Phys. 2008, 129, 104103. [Google Scholar] [CrossRef]
- Laurent, A.D.; Jacquemin, D. TD-DFT Benchmarks: A Review. Int. J. Quantum Chem. 2013, 113, 2019–2039. [Google Scholar] [CrossRef]
- Nguyen, A.L.; Bobadova-Parvanova, P.; Hopfinger, M.; Fronczek, F.R.; Smith, K.M.; Vicente, M.G.H. Synthesis and Reactivity of 4,4-Dialkoxy-BODIPYs: An Experimental and Computational Study. Inorg. Chem. 2015, 54, 3228–3236. [Google Scholar] [CrossRef] [PubMed]
- Goliber, D.; Hernandez, E.; Lamaster, D.; Vicente, M.; Bobadova, P. Computational Modeling of a Series of 8(meso)-pyridyl-BODIPYs. 2024. Available online: https://scimeetings.acs.org/exhibit/Poster-Board-1616-Computational-modeling/3990974 (accessed on 20 September 2024).
- Goliber, D.; Hernandez, E.; Bobadova, P. Substituent Effects on the Photophysical Properties of a Series of meso-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data. 2024. Available online: https://graduatedivision.ucmerced.edu/sites/graduatedivision.ucmerced.edu/files/page/documents/22nd_mercury_program_2024_4.pdf (accessed on 20 September 2024).
BODIPY | (eV) | (eV) | (eV) | (D) | (D) | (D) |
---|---|---|---|---|---|---|
Phe | −6.79 | −1.62 | 5.17 | 5.03 | 0.07 | 0.07 |
2Py | −6.77 | −1.62 | 5.14 | 6.05 | 0.03 | 0.05 |
3Py | −6.92 | −1.78 | 5.14 | 3.94 | 0.02 | 0.08 |
4Py | −6.96 | −1.82 | 5.15 | 2.13 | 0.02 | 0.07 |
PheCl | −6.94 | −1.82 | 5.12 | 5.61 | 0.13 | 0.29 |
2PyCl | −6.91 | −1.82 | 5.10 | 6.53 | −0.08 | 0.10 |
3PyCl | −7.06 | −1.97 | 5.09 | 4.53 | −0.04 | 0.22 |
4PyCl | −7.10 | −2.01 | 5.10 | 3.14 | 0.08 | 0.16 |
PheCl2 | −7.07 | −2.01 | 5.07 | 5.23 | 0.20 | 0.27 |
2PyCl2 | −7.05 | −2.00 | 5.05 | 6.22 | 0.16 | 0.58 |
3PyCl2 | −7.19 | −2.15 | 5.04 | 4.02 | 0.28 | 0.53 |
4PyCl2 | −7.23 | −2.19 | 5.04 | 2.30 | 0.14 | 0.14 |
PheNO2 | −7.46 | −2.21 | 5.25 | 9.04 | −0.33 | 0.45 |
2PyNO2 | −7.44 | −2.22 | 5.21 | 9.51 | −0.58 | 0.87 |
3PyNO2 | −7.58 | −2.37 | 5.21 | 8.02 | −0.60 | 0.71 |
4PyNO2 | −7.62 | −2.40 | 5.22 | 7.54 | −0.41 | 0.46 |
Phe(NO2)2 | −8.01 | −2.80 | 5.21 | 6.09 | 0.17 | 0.17 |
2Py(NO2)2 | −7.98 | −2.81 | 5.17 | 7.08 | 0.14 | 0.41 |
3Py(NO2)2 | −8.13 | −2.96 | 5.17 | 4.91 | 0.15 | 0.28 |
4Py(NO2)2 | −8.17 | −3.00 | 5.18 | 3.11 | 0.11 | 0.11 |
PheCO2Me | −7.03 | −1.83 | 5.21 | 3.98 | 0.02 | 0.39 |
2PyCO2Me | −7.01 | −1.83 | 5.18 | 4.86 | −0.30 | 0.71 |
3PyCO2Me | −7.16 | −1.99 | 5.17 | 3.02 | −0.38 | 0.61 |
4PyCO2Me | −7.20 | −2.02 | 5.18 | 1.92 | −0.07 | 0.35 |
Phe(CO2Me)2 | −7.24 | −2.02 | 5.22 | 1.92 | 0.11 | 0.11 |
2Py(CO2Me)2 | −7.21 | −2.02 | 5.19 | 3.00 | 0.16 | 0.42 |
3Py(CO2Me)2 | −7.36 | −2.18 | 5.18 | 1.89 | 0.04 | 0.31 |
4Py(CO2Me)2 | −7.40 | −2.21 | 5.19 | 1.05 | −0.03 | 0.03 |
PheCF3 | −7.20 | −1.97 | 5.24 | 6.78 | −0.04 | 0.18 |
2PyCF3 | −7.18 | −1.97 | 5.21 | 7.56 | −0.36 | 0.71 |
2PyCF3 | −7.33 | −2.13 | 5.21 | 5.85 | −0.32 | 0.53 |
2PyCF3 | −7.37 | −2.16 | 5.21 | 4.87 | −0.11 | 0.18 |
Phe(CF3)2 | −7.57 | −2.31 | 5.26 | 5.43 | 0.14 | 0.14 |
2Py(CF3)2 | −7.54 | −2.31 | 5.24 | 6.46 | 0.03 | 0.61 |
3Py(CF3)2 | −7.69 | −2.46 | 5.23 | 4.30 | 0.13 | 0.47 |
4Py(CF3)2 | −7.73 | −2.49 | 5.24 | 2.50 | 0.11 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobadova-Parvanova, P.; Goliber, D.; Hernandez, E.; LaMaster, D.; Vicente, M.d.G.H. Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data. Physchem 2024, 4, 483-494. https://doi.org/10.3390/physchem4040034
Bobadova-Parvanova P, Goliber D, Hernandez E, LaMaster D, Vicente MdGH. Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data. Physchem. 2024; 4(4):483-494. https://doi.org/10.3390/physchem4040034
Chicago/Turabian StyleBobadova-Parvanova, Petia, Dylan Goliber, Elijuah Hernandez, Daniel LaMaster, and Maria da Graça H. Vicente. 2024. "Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data" Physchem 4, no. 4: 483-494. https://doi.org/10.3390/physchem4040034
APA StyleBobadova-Parvanova, P., Goliber, D., Hernandez, E., LaMaster, D., & Vicente, M. d. G. H. (2024). Substituent Effects on the Photophysical Properties of a Series of 8(meso)-Pyridyl-BODIPYs: A Computational Analysis of the Experimental Data. Physchem, 4(4), 483-494. https://doi.org/10.3390/physchem4040034