Sustainability of Shade-Grown Erva-Mate Production: A Management Framework for Forest Conservation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Restoration Systems
2.1.1. Restoration in Non-Forested Areas
2.1.2. Restoration of Degraded Forests
2.2. Developing a Forest Restoration Framework for Agroforestry
- (a)
- Invasive species—a common source of degradation in the Araucaria Forest, the dominance of invasive native bamboos (especially Merostachys ssp., and Chusquea ssp.) restrict forest development by limiting natural regeneration. Bamboos are able to maintain dominant populations in the long-term [25] that ultimately leads to the impoverishment of diversity and structural fragmentation [26,27]; they also create an unsuitable environment for erva-mate production.
- (b)
- Canopy cover—considered by farmers as a sustainability goal [17] but also a requirement to maintain quality production, as shade-grown erva-mate is considered a prime product and is frequently rewarded with higher selling prices [37]. Thus, canopy cover has environmental and financial implications that demand continuous monitoring and planned interventions.
- (c)
- Species diversity—high levels of species diversity is a universal attribute observed in both local [17,36] and general assessments [32]. Although diversity can be evaluated at different taxonomic levels for the fauna, flora, soil macro- and microflora, frequent evaluations are restricted to tree diversity. The framework followed this practice as it is considered an adequate surrogate for assessing overall diversity.
- (d)
- Demography—demographic parameters, such as growth, survival, and reproductive success, are influenced by age, size, and life stage of individuals within a population [38]. In order to avoid local extinction, a species depends on the recruitment of young plants that reach maturity in a process that includes seed production and dispersion, germination, and establishment [39]. Thus, ideally, a population should have individuals in all life stages in sufficient numbers to guarantee its stability; as age is impractical to determine, size is frequently used as a surrogate in assessing a plant population.
- (e)
- Tree spatial distribution—complementary to demography, population dynamics is dependent on successful pollination requiring individuals to have a spatial distribution within a pollinator’s range and to be sufficiently large to maintain genetic diversity, which, in turn, is a key factor in evolution, fitness, and ultimately, the survival of tree species populations [40,41].
- (f)
- Management practices—frequently the most important cause of forest degradation is forest resource management, which includes the control of plant populations (favoring or reducing) both in terms of their density (number of individuals) and spatial distribution. Management practices might be linked to the direct use of resources (e.g., firewood) or indirectly related (e.g., understory and canopy thinning to favor erva-mate production or forage species growth) [3].
- (g)
- Tree species longevity—although there are several species’ life-history traits that could be used to assess an agroforestry system, life cycle is likely the most important. While pioneer species are usually linked to a shorter lifespan, late successional species tend to live longer. The proportion between short- and long-living trees (and their spatial position) is a determinant factor for defining where and when management practices should be applied to maintain a stable forest cover.
3. Results and Discussion
3.1. Restoration Systems
3.1.1. Productive Agroforestry Restoration (PAR)
3.1.2. Accelerated Canopy Recovery (ACRE)
3.1.3. Active Regeneration Management (ARM)
3.2. Forest Restoration Framework in the Context of Agroforestry
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Nimmo, E.R.; de Carvalho, A.I.; Laverdi, R.; Lacerda, A.E.B. “In order to be someone, I have to leave the farm”: Valuing rural youth decisions to continue traditional production in Brazil. Urban Agric. Mag. 2018, 35, 38–39. [Google Scholar]
- Lacerda, A.E.B. Conservation Strategies for Araucaria Forests in Southern Brazil: Assessing Current and Alternative Approaches. Biotropica 2016, 48, 537–544. [Google Scholar] [CrossRef]
- Lacerda, A.E.B.; Hanisch, A.L.; Nimmo, E.R. Leveraging Traditional Agroforestry Practices to Support Sustainable and Agrobiodiverse Landscapes in Southern Brazil. Land 2020, 9, 176. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Negrelle, R.R.B.; Bonatto, R.A.; Nimmo, E.R.; Lacerda, A.E.B. Evaluating Sustainability in Traditional Silvopastoral Systems (Caívas): Looking Beyond the Impact of Animals on Biodiversity. Sustainability 2019, 11, 3098. [Google Scholar] [CrossRef] [Green Version]
- Hanisch, A.L.; Radomski, M.I.; de Lacerda, A.E.B. Can Araucaria Forest Remnants Regenerate after 70 Years of Animal Husbandry? A Case Study on Caívas in Southern Brazil. Floresta 2020, 50, 1537–1546. [Google Scholar] [CrossRef]
- Chaimsohn, F.P.; de Souza, A.M.; Lacerda, A.E.B.; Nimmo, E.R. (Eds.) Sistemas de Produção Tradicionais e Agroflorestais de Erva-mate no Centro-Sul do Paraná e Norte Catarinense: Contribuições para a Construção do Processo de Indicação Geográfica, 2nd ed.; Editora Fi: Porto Alegre, Brazil, 2023. [Google Scholar] [CrossRef]
- Nimmo, E.R.; Nogueira, J.F.M.M. Creating Hybrid Scientific Knowledge and Practice: The Jesuit and Guaraní Cultivation of Yerba Mate. Can. J. Lat. Am. Caribb. Stud./Rev. Can. Des Études Lat.-Américaines Caraïbes 2019, 44, 347–367. [Google Scholar] [CrossRef]
- International Assessment of Agricultural Knowledge Science and Technology for Development (IAASTD), & United Nations Environment Programme. Agriculture at a Crossroads: Synthesis Report; International Assessment of Agricultural Knowledge, Science and Technology for Development: Washington, DC, USA, 2009. [Google Scholar]
- Sinclair, F.; Wezel, A.; Mbow, C.; Chomba, S.; Robiglio, V.; Harrison, R. The Contribution of Agroecological Approaches to Realizing Climate-Resilient Agriculture; GCA: Rotterdam, The Netherlands, 2019. [Google Scholar]
- Schuler, H.R.; Alarcon, G.G.; Joner, F.; Dos Santos, K.L.; Siminski, A.; Siddique, I. Ecosystem Services from Ecological Agroforestry in Brazil: A Systematic Map of Scientific Evidence. Land 2022, 11, 83. [Google Scholar] [CrossRef]
- Angelsen, A.; Kaimowitz, D.; Center for International Forestry Research (Eds.) Agricultural Technologies and Tropical Deforestation; CABI Publishing in Association with Center for International Forestry Research: Wallingford, UK; New York, NY, USA, 2001; ISBN 978-0-85199-451-2. [Google Scholar]
- FAO. FRA 2020 Remote Sensing Survey; FAO Forestry Paper; FAO: Rome, Italy, 2022. [Google Scholar]
- Kopittke, P.M.; Dalal, R.C.; Finn, D.; Menzies, N.W. Global Changes in Soil Stocks of Carbon, Nitrogen, Phosphorus, and Sulphur as Influenced by Long-term Agricultural Production. Glob. Chang. Biol. 2017, 23, 2509–2519. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.I.; Altieri, M.A. Bases agroecológicas para la adaptación de la agricultura al cambio climático. URJ 2019, 11, S55–S61. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Biodiversity for Food and Agriculture; Bélanger, J., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2019. [Google Scholar]
- Sangalli, A.R.; Maia, R.E.D.F.; Strate, M.F.; Nimmo, E.R.; Lacerda, A.E.B.; Miranda, T.M.; Coelho-de-Souza, G. Monitoramento e desempenho de indicadores participativos em sistemas tradicionais de produção de erva-mate no Centro-Sul e no Vale do Iguaçu, Paraná, Brasil. Desenvolv. Meio Ambiente 2022, 59, 249–274. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Vogt, G.A.; da Cunha Marques, A.; Bona, L.C.; Bosse, D.D. Estrutura e composição florística de cinco áreas de caíva no planalto norte de Santa Catarina. Pesq. Flor. Bras. 2010, 30, 303–310. [Google Scholar] [CrossRef]
- Hanisch, A.L.; Radomski, M.I.; Bona, L.C.; Marques, A.D.C. Melhoria da produção animal em áreas de caíva e sua contribuição para a viabilização de Corredores Ecológicos. Desenv. Reg. Deb. 2016, 6, 170–188. [Google Scholar] [CrossRef]
- Pinotti, L.C.A.; Hanisch, A.L.; Negrelle, R.R.B. The Impact of Traditional Silvopastoral System on the Mixed Ombrophilous Forest Remnants. Floresta Ambient. 2018, 25, e20170192. [Google Scholar] [CrossRef] [Green Version]
- Zakikhani, P.; Zahari, R.; Sultan, M.T.H.; Majid, D.L. Extraction and Preparation of Bamboo Fibre-Reinforced Composites. Mater. Des. 2014, 63, 820–828. [Google Scholar] [CrossRef]
- Cardoso, D.J.; Garrastazu, M.C.; Lacerda, A.E.B.; Fiorucci, L.H.; Zanatta, J.A.; Higa, R.C.V.; Rachwal, M.F.G. Estoque de Biomassa Arbórea Em Remanescentes de Floresta Ombrófila Mista e Área de Transição: Inferências Sobre Estágio Sucessional; Documentos Embrapa Florestas; Embrapa Florestas: Colombo, Brazil, 2018; Volume 319, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/182144/1/Livro-Doc-319-1543-final.pdf (accessed on 15 June 2023).
- Marques, A.D.C. As Paisagens do Mate e a Conservação Socioambiental: Um Estudo junto aos Agricultores Familiares do Planalto Norte Catarinense. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2014. [Google Scholar]
- Pinotti, L.C.A. Subsídios à Conservação e Manejo Sustentável de Remanescentes de Floresta Ombrófila Mista. Master’s Dissertation, Universidade Federal do Paraná, Curitiba, Brazil, 2016. [Google Scholar]
- Greig, C.; Robertson, C.; Lacerda, A.E.B. Spectral-Temporal Modelling of Bamboo-Dominated Forest Succession in the Atlantic Forest of Southern Brazil. Ecol. Model. 2018, 384, 316–332. [Google Scholar] [CrossRef]
- Kellermann, B.; Lacerda, A.E.B. Arrested Development? Investigating the Role of Bamboo in Araucaria Forest Succession in Southern Brazil. J. Plant Ecol. 2019, 12, 1034–1046. [Google Scholar] [CrossRef]
- Lacerda, A.E.B. Understanding the Long-Term Impact of Bamboos on Secondary Forests: A Case for Bamboo Management in Southern Brazil. Diversity 2021, 13, 567. [Google Scholar] [CrossRef]
- Radomski, M.I.; Lacerda, A.E.B. Plantios de Bracatinga Na Estação Experimental Da Embrapa Em Caçador, SC; Documentos Embrapa Florestas; Embrapa Florestas: Colombo, Brazil, 2019; Volume 328, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/200881/1/Livro-Doc-328-1560-final.pdf (accessed on 15 June 2023).
- Lacerda, A.E.B.; Kellermann, B. What Is the Long-Term Effect of Bamboo Dominance on Adult Trees in the Araucaria Forest? A Comparative Analysis between Two Successional Stages in Southern Brazil. Diversity 2019, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, A.E.B. Série Erva-Mate Sombreada (1) Sistema de Produção de Erva-Mate Baseado No Manejo Tradicional Bracatingais Dominados Por Bambus (Taquarais); Comunicado Técnico; Embrapa Florestas: Colombo, Brazil, 2019; Volume 439, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/205467/1/CT-439-1682-final-1.pdf (accessed on 15 June 2023).
- Lacerda, A.E.B. Série Erva-Mate Sombreada (2) Sistema de Restauração Produtivo Agroflorestal; Comunicado Técnico; Embrapa Florestas: Colombo, Brazil, 2019; Volume 440, Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/205685/1/CT-440-1677-final.pdf (accessed on 15 June 2023).
- Astier, M.; Masera, O.; Lopez-Ridaura, S. Sustentabilidad y Manejo de Recursos Naturales: El Marco de Evaluación MESMIS; Mundi-Prensa Mexico: Mexico City, Mexico, 1999; ISBN 968-7462-11-6. [Google Scholar]
- Arnés, E.; Astier, M. (Eds.) Sostenibilidad En Sistemas de Manejo de Recursos Naturales En Países Andinos; UNESCO: Paris, France, 2018; ISBN 978-92-3-300101-5. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000366841.locale=en (accessed on 15 June 2023).
- FAO. Guidelines for Sustainability Assessment of Food and Agriculture Systems (SAFA); Version 3; FAO: Rome, Italy, 2014; Available online: https://www.fao.org/3/i3957e/i3957e.pdf (accessed on 15 June 2023).
- Camino, R.d.V.; Müller, S. Sostenibilidad de La Agricultura y Los Recursos Naturales: Base Para Estabelecer Indicadores. Ser. Doc. Programas (IICA) 1993, 38, 140. [Google Scholar]
- Araújo, F.A.d.S.; de Andrade, L.P.; Reis Molica, R.J.; Andrade, H.M.L.d.S. Indicadores de sustentabilidade para sistemas agroflorestais: Levantamento de metodologias e indicadores utilizados. Rev. Econ. Sociol. Rural 2022, 60, e246191. [Google Scholar] [CrossRef]
- Nimmo, E.R.; de Carvalho, A.I.; Laverdi, R.; Lacerda, A.E.B. Oral History and Traditional Ecological Knowledge in Social Innovation and Smallholder Sovereignty: A Case Study of Erva-Mate in Southern Brazil. Ecol. Soc. 2020, 25, art17. [Google Scholar] [CrossRef]
- Stubben, C.; Milligan, B. Estimating and Analyzing Demographic Models Using the Popbio Package in R. J. Stat. Soft. 2007, 22, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Ramos, M.; Soto-Castro, A. Seed Rain and Advanced Regeneration in a Tropical Rain Forest. Vegetatio 1993, 107/108, 299–318. [Google Scholar] [CrossRef]
- Rajora, O.P.; Pluhar, S.A. Genetic Diversity Impacts of Forest Fires, Forest Harvesting, and Alternative Reforestation Practices in Black Spruce (Picea Mariana). Theor. Appl. Genet. 2003, 106, 1203–1212. [Google Scholar] [CrossRef]
- Carneiro, F.S.; Lacerda, A.E.B.; Lemes, M.R.; Gribel, R.; Kanashiro, M.; Wadt, L.H.O.; Sebbenn, A.M. Effects of Selective Logging on the Mating System and Pollen Dispersal of Hymenaea Courbaril L. (Leguminosae) in the Eastern Brazilian Amazon as Revealed by Microsatellite Analysis. For. Ecol. Manag. 2011, 262, 1758–1765. [Google Scholar] [CrossRef]
- Daniel, O. Erva-Mate: Sistema de Produção e Processamento Industrial; UFGD/UEMS: Dourados, Brazil, 2009. [Google Scholar]
- Penteado Junior, J.F.; Goulart, I.C.G.d.R. Erva 20: Sistema de Produção para Erva-Mate; Embrapa: Brasília, Brazil, 2019. [Google Scholar]
- Carpanezzi, A.A.; Laurent, J.-M.E. Manual Técnico Da Bracatinga (Mimosa scabrella Benth); Documentos Embrapa Florestas; Embrapa Florestas: Colombo, Brazil, 1988; Volume 20. [Google Scholar]
- Montti, L.; Villagra, M.; Campanello, P.I.; Gatti, M.G.; Goldstein, G. Functional Traits Enhance Invasiveness of Bamboos over Co-Occurring Tree Saplings in the Semideciduous Atlantic Forest. Acta Oecologica 2014, 54, 36–44. [Google Scholar] [CrossRef]
- Veblen, T.T. Growth Patterns of Chusquea Bamboos in the Understory of Chilean Nothofagus Forests and Their Influences in Forest Dynamics. Bull. Torrey Bot. Club 1982, 109, 474–487. [Google Scholar] [CrossRef]
- World Wide Fund for Nature; UN Environment Programme World Conservation Monitoring Centre; GEF Small Grants Programme, ICCA-Global Support Initiative; Landmark Global Platform of Indigenous and Community Land; The Nature Conservancy; Conservation International; Wildlife Conservation Society; UNDP Equator Prize; International Land Coalition Secretariat; Conservation Matters LLC. The State of Indigenous Peoples’ and Local Communities’ Lands and Territories: A Technical Review of the State of Indigenous Peoples’ and Local Communities’ Lands, Their Contributions to Global Biodiversity Conservation and Ecosystem Services, the Pressures They Face, and Recommendations for Actions; IUCN: Gland, Switzerland, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lacerda, A.E.B. Sustainability of Shade-Grown Erva-Mate Production: A Management Framework for Forest Conservation. Conservation 2023, 3, 394-410. https://doi.org/10.3390/conservation3030027
Lacerda AEB. Sustainability of Shade-Grown Erva-Mate Production: A Management Framework for Forest Conservation. Conservation. 2023; 3(3):394-410. https://doi.org/10.3390/conservation3030027
Chicago/Turabian StyleLacerda, André Eduardo Biscaia. 2023. "Sustainability of Shade-Grown Erva-Mate Production: A Management Framework for Forest Conservation" Conservation 3, no. 3: 394-410. https://doi.org/10.3390/conservation3030027