Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Studies and Sampling
2.2. Characterization Methodology
2.2.1. Macroscopic Observation of Cores and Carbonation Depth Assessment
2.2.2. Capillary Water Absorption Test
2.2.3. Open Porosity and Bulk Density Test
2.2.4. Ultrasonic Pulse Velocity Test
2.2.5. Compressive Strength and Dynamic Modulus of Elasticity in Compression
2.2.6. Quality Evaluation of the Hardened Concrete
3. Results and Discussion
3.1. Macroscopic Observation of Cores and Carbonation Depth
3.2. Physical Characterization
3.3. Mechanical Characterization
3.4. Quality Evaluation of the Hardened Concrete
4. Conclusions
- The crushed coarse aggregate, mainly composed of limestone, had its maximum size reduced, having decreased from the late 1960s onwards, as exemplified by the case study FCG (1975), as set out in current Portuguese regulation by the time of construction.
- The carbonation depth shows a decreasing trend, which is expected with concrete ageing. Although it is quite variable as the presence of coatings may play an important role.
- The open porosity and bulk density values did not show very significant variations. A slight tendency towards a reduction in bulk density and increase in porosity may be related to the variation in the maximum size of the largest aggregate, which varies in the same direction as compacity.
- Water absorption by capillary rising for all types of concrete studied (white and gray) does not show a consistent trend in the same direction as the open porosity.
- Open porosity slightly increases towards the end of the analyzed period, implying that this is not exclusively due to the characteristics of the binder but to the whole composite material itself.
- The mechanical characteristics, except for the building awarded in 1987, show a clear trend towards an increase in the values of the compressive strength and the dynamic modulus of elasticity.
- Except for the building awarded in 1987, the estimation of the compressive strength at 28 days of curing showed that the project design had been accomplished.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wilkie, S.; Dyer, T. Design and durability of early 20th century concrete bridges in Scotland: A review of historic test data. Int. J. Archit. Herit. 2021, 1–21. [Google Scholar] [CrossRef]
- Sena-Cruz, J.; Ferreira, R.M.; Ramos, L.F.; Fernandes, F.; Miranda, T.; Castro, F. Luiz Bandeira Bridge: Assessment of a historical reinforced concrete bridge. Int. J. Archit. Herit. 2013, 7, 628–652. [Google Scholar] [CrossRef]
- Vidovszky, I.; Pintér, F. An investigation of the application and material characteristics of early 20th-century Portland cement-based structures from the historical Campus of the Budapest University of Technology and Economics. Int. J. Archit. Herit. 2020, 14, 358–375. [Google Scholar] [CrossRef]
- Marcos, I.; San-José, J.T.; Garmendia, L.; Santamaría, A.; Manso, J.M. Central lessons from the historical analysis of 24 reinforced-concrete structures in northern Spain. J. Cult. Herit. 2016, 20, 649–659. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.; Pachón-Montaño, A.; Queipo-de-Llano, J.; Martín-Caro, J.; López, D.; Paniagua, I.; Martínez, I.; Rubiano, F.; García-Lodeiro, I.; Fernández-Ordóñez, L.; et al. Characterisation and diagnosis of heritage concrete: Case studies at the Eduardo Torroja Institute, Madrid, Spain. Mater. Constr. 2021, 71, e262. [Google Scholar] [CrossRef]
- Mather, B. Concrete durability. Cem. Concr. Compos. 2004, 26, 3–4. [Google Scholar] [CrossRef]
- Ministério do Comércio. Decree n° 4036. Regulation for the Use of Reinforced Concrete; Diário do Govêrno: Lisbon, Portugal, 1918. (In Portuguese) [Google Scholar]
- Kurrer, K.-E. The History of the Theory of Structures: From Arch Analysis to Computational Mechanics; Ernst & Sohn: Berlin, Germany, 2008. [Google Scholar]
- Mesnager, A. Reinforced Concrete Course; Dunod: Paris, France, 1921. (In French) [Google Scholar]
- Ministerium der Öffentlichen Arbeiten. Provisions for the Execution of Reinforced Concrete Structures in Tall Buildings; Zentralblatt der Bauverwaltung: Berlin, Germany, 1904. (In German) [Google Scholar]
- Ministerium der Öffentlichen Arbeiten. Prussia. In Provisions for the Execution of Reinforced Concrete Structures in Tall Buildings; Zentralblatt der Bauverwaltung: Berlin, Germany, 1907. (In German) [Google Scholar]
- Martin, N. The Properties and Design of Reinforced Concrete; France Commission du Ciment Armé, Ed.; D. Van Nostrand Company: New York, NY, USA, 1912. [Google Scholar]
- Gazzetta Ufficiale del Regno de Italia. Standard Test Methods for Hydraulic Binders, Standard Requirements for the Execution of Reinforced Concrete Works and Technical Conditions with which Supplies of Hydraulic Binders must Comply; Gazzetta Ufficiale del Regno de Italia: Rome, Italy, 1907. (In Italian) [Google Scholar]
- Chrimes, M.M. The development of concrete bridges in the British Isles prior to 1940. Proc. Inst. Civ. Eng. Struct. Build. 1996, 116, 404–431. [Google Scholar] [CrossRef]
- Witten, A. The Concrete Institute 1908–1923, precursor of the Institution of Structural Engineers. Proc. Inst. Civ. Eng. Struct. Build. 1996, 116, 470–480. [Google Scholar] [CrossRef]
- Nielsen, M.P.; Hoang, L.C. Limit Analysis and Concrete Plasticity, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Souponitski, S.; Sniatkov, S.; Grigoriev, S. Early reinforced concrete constructions in Russia: Specific faults and causes of failure. Eng. Fail. Anal. 2001, 8, 201–212. [Google Scholar] [CrossRef]
- Mändel, M.; Orro, O. The marvellous reinforced concrete shells of Tallinn sea-plane hangars in the context of early concrete architecture in Estonia. Constr. Hist. Soc. 2012, 27, 65–85. [Google Scholar]
- Emperger, F. Manual for Reinforced Concrete Construction; Wilhelm Ernst & Sohn: Berlin, Germany, 1909. (In German) [Google Scholar]
- NACU. Requirements for Reinforced Concrete or Concrete-Steel Constructed Buildings; National Association of Cement Users: Philadelphia, PA, USA, 1908. [Google Scholar]
- NACU. Standard Building Regulations for the Use of Reinforced Concrete; National Association of Cement Users: Philadelphia, PA, USA, 1910. [Google Scholar]
- Ministério das Obras Públicas e Comunicações. Decree n° 25948. Reinforced Concrete Regulation; Diário do Govêrno: Lisbon, Portugal, 1935. (In Portuguese) [Google Scholar]
- Ministério das Obras Públicas. Decree n° 47723. Regulation of Reinforced Concrete Structures; Imprensa Nacional de Lisboa: Lisbon, Portugal, 1967. (In Portuguese) [Google Scholar]
- Ministério da Habitação, Obras Públicas e Transportes. Decree n° 39-C/83. Regulation of Reinforced and Prestressed Concrete Structures; Imprensa Nacional de Lisboa: Lisbon, Portugal, 1983. (In Portuguese) [Google Scholar]
- Ministério das Obras Públicas. Decree n° 404/71. Hydraulic Binder Concrete Regulation; Imprensa Nacional de Lisboa: Lisbon, Portugal, 1971. (In Portuguese) [Google Scholar]
- Ministério das Obras Públicas, Transportes e Telecomunicações. Decree n° 445/89. Hydraulic Binder Concrete Regulation; Imprensa Nacional de Lisboa: Lisbon, Portugal, 1989. (In Portuguese) [Google Scholar]
- CML. Valmor Prize; Silva, A.P., Ed.; Câmara Municipal de Lisboa: Lisbon, Portugal, 2004. (In Portuguese) [Google Scholar]
- Bairrada, E.M. Valmor Prize 1902–1952; Biblioteca de Lisboa: Lisbon, Portugal, 1988. (In Portuguese) [Google Scholar]
- Pedreirinho, J.M. A Critical History of the Valmor Prize, 1st ed.; Argumentum: Lisbon, Portugal, 2018. [Google Scholar]
- Ambroziak, A.; Haustein, E.; Niedostatkiewicz, M. Chemical, Physical, and mechanical properties of a 95-year-old concrete built-in arch bridge. Materials 2021, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Ambroziak, A.; Haustein, E.; Kondrat, J. Chemical and Mechanical Properties of 70-Year-Old Concrete. J. Mater. Civ. Eng. 2019, 31, 04019159. [Google Scholar] [CrossRef]
- Sohail, M.G.; Kahraman, R.; Ozerkan, N.G.; Alnuaimi, N.A.; Gencturk, B.; Dawood, M.; Belarbi, A. Reinforced Concrete Degradation in the Harsh Climates of the Arabian Gulf: Field Study on 30-to-50-Year-Old Structures. J. Perform. Constr. Facil. 2018, 32, 04018059. [Google Scholar] [CrossRef]
- AML. Construction Work 47105; Process 650/SEC/PG/1934; Municipal Archive: Lisbon, Portugal, 1934. (In Portuguese) [Google Scholar]
- AML. Construction Work 50576; Process 10460/DAG/PG/1936; Municipal Archive: Lisbon, Portugal, 1936. (In Portuguese) [Google Scholar]
- AML. Construction Work 51405; Process 15050/DAG/PG/1937; Municipal Archive: Lisbon, Portugal, 1937. (In Portuguese) [Google Scholar]
- AML. Construction Work 27545; Process 13668/DAG/PG/1955; Municipal Archive: Lisbon, Portugal, 1955. (In Portuguese) [Google Scholar]
- AML. Construction Work 52761; Process 57854/DAG/PG/1963; Municipal Archive: Lisbon, Portugal, 1963. (In Portuguese) [Google Scholar]
- AML. Construction Work 54898; Process 39190/1965; Municipal Archive: Lisbon, Portugal, 1965. (In Portuguese) [Google Scholar]
- AML. Construction Work 52469; Process 1868/1966; Municipal Archive: Lisbon, Portugal, 1966. (In Portuguese) [Google Scholar]
- AML. Construction Work 52743; Process 1268/DAG/PG/1966; Municipal Archive: Lisbon, Portugal, 1966. (In Portuguese) [Google Scholar]
- Proença, J.; Neves, O. Casa Pia de Lisboa. Structure Project; Jacob Rodrigues Pereira Institute: Lisbon, Portugal, 1982. (In Portuguese) [Google Scholar]
- Fonseca, A.A.; Nunes, A. White concrete. Manufacture, characteristics and structural use. In Proceedings of the 2nd Conference on Concrete Structures, FEUP, Porto, Portugal, 24 April 1998. (In Portuguese). [Google Scholar]
- Mendonça, J.; Villar, L. C8 Building—Chemistry and Physics Department of the Faculty of Sciences of the University of Lisbon. Foundations and Structures Design; Betar—Estudos e Projectos de Estabilidade, Lda.: Lisbon, Portugal, 1995. (In Portuguese) [Google Scholar]
- AML. Construction Work 62971; Process 3256/OB/1992; Municipal Archive: Lisbon, Portugal, 1992. (In Portuguese) [Google Scholar]
- Mendonça, J.; Villar, M.; Santos, S. Rectory Building of the New University of Lisbon. Detailed Design of Foundations and Structures; Betar—Estudos e Projectos de Estabilidade, Lda.: Lisboa, Portugal, 1998. (In Portuguese) [Google Scholar]
- Almeida, L.; Silva, A.S.; Veiga, M.d.R.; Mirão, J.; Vieira, M. 20th-Century Award-Winning Buildings in Lisbon (Portugal). Study of Plasters, Rendering, and Concrete Materials Aiming Their Sustainable Preservation. Buildings 2021, 11, 359. [Google Scholar] [CrossRef]
- CEN-EN 16085:2012; Conservation of Cultural Property. Methodology for Sampling from Materials of Cultural Property. General Rules. European Standard: Brussels, Belgium, 2012.
- CEN-EN 1992-1-2; Eurocode 2: Design of Concrete Structures. European Standard: Brussels, Belgium, 2012.
- CEN-EN 14630; Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Carbonation Depth in Hardened Concrete by the Phenolphthalein Method. European Standard: Brussels, Belgium, 2006.
- E393; Concrete—Determination of Capillary Water Absorption. LNEC: Lisboa, Portugal, 1993. (In Portuguese)
- E395; Concrete—Determination of Water Absorption by Immersion. Vacuum Test. LNEC: Lisboa, Portugal, 1993. (In Portuguese)
- CEN-EN 12504-4; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. European Standard: Brussels, Belgium, 2007.
- CEN-EN 12390-3; Tests for Hardened Concrete; Part 3: Compression Strength of Test Specimens. European Standard: Brussels, Belgium, 2011.
- E397; Concrete—Determination of Modulus of Elasticity in Compression. LNEC: Lisbon, Portugal, 1993. (In Portuguese)
- Chen, B.; Liu, J. Effect of aggregate on the fracture behavior of high strength concrete. Constr. Build. Mater. 2004, 18, 585–590. [Google Scholar] [CrossRef]
- Fazli, H.; Yan, D.; Zhang, Y.; Zeng, Q. Effect of size of coarse aggregate on mechanical properties of metakaolin-based geopolymer concrete and ordinary concrete. Materials 2021, 14, 3316. [Google Scholar] [CrossRef] [PubMed]
- Whitehurst, E.A. Soniscope tests concrete structures. J. Amer. Conc. Inst. 1951, 47, 433–444. [Google Scholar]
- Carvalho, J.; Manuppella, G.; Casal Moura, A. Portuguese decorative limestones. Bol. Minas. 2001, 37, 223–232. (In Portuguese) [Google Scholar]
- Corish, A.T.; Jackson, P.J. Portland cement properties—Past and present. Concrete 1982, 16, 16–18. [Google Scholar]
- Nixon, P.J. Changes in Portland Cement Properties and Their Effects on Concrete; Building Research Establishment: Watford, UK, 1988. [Google Scholar]
- Zhang, S.P.; Zong, L. Evaluation of relationship between water absorption and durability of concrete materials. Adv. Mat. Sci. Engin. 2014, 2014, 650373. [Google Scholar] [CrossRef] [Green Version]
Regulations | Main Characteristics |
---|---|
Regulation of 1918 | Prescribed dosage in the regulation: 300 kg of cement, 400 L of sand, and 800 L of gravel. There is no concept of resistance class. Minimum compressive strength: 120 kg/cm2, at 28 days (through cubes). |
RBA 1935 | The dosage prescribed in the regulation (300 kg of cement, 400 L of sand, and 800 L of gravel). There is no concept of resistance class. Minimum compressive strength value: 180 kg/cm2, at 28 days (through cubes). |
REBA 1967 | Resistance classes B180, B225, B300, B350 and B400 (compressive strength in kg/cm2 = numeric part). |
Characteristic resistance in kg/cm2 at 28 days (through cubes). | |
RBLH 1971 (updated by RBLH 1989) | Two types of concrete: B for resistance requirement and BD1, 2, and 3 for special durability requirement. |
REBAP 1983 | Resistance classes from B15 to B55, with the resistance increasing by 5 MPa to each class (compressive strength in Mpa = numeric part). Classes defined in international units (MPa). Characteristic strength in MPa (cubic test pieces). |
Case Study (Award Year) | Name | Image of the Case Study | Construction Year (Completion) | Sampling Zones (Interior/Exterior) | Structural Element | Number of Samples | Type of Coatings/Samples’ Distance to the Surface | |
---|---|---|---|---|---|---|---|---|
Architectural Concrete | Non-Architectural Concrete | |||||||
IRF (1938) | Nossa Senhora do Rosário de Fátima Church | 1938 | Belltower (interior) | Columns | n.a. | 4 | Plasters and painting layers/up to 10 mm | |
DN (1940) | Diário de Notícias Building | 1940 | Basement. −2 floor (interior) | Columns | n.a. | 4 | Plasters/26 to 80 mm | |
LIP (1958) | Laboratories of Pasteur Institute of Lisbon | 1957 | 1st floor. Chemical laboratory and technical area (interior) | Columns | n.a. | 6 | Painting layers/up to 1 mm | |
2nd floor. West façade (exterior) | Beam | n.a. | 1 | Rendering mortar/7 mm | ||||
EUA53 (1970) | América Building | 1969 | Stairs. Between the 3rd and 4th floor (interior) | Wall | n.a. | 1 | Plasters/25 mm | |
Corridor. 2nd-floor technical room (interior) | Column | n.a. | 1 | Plasters/25 mm | ||||
FRAN (1971) | Franjinhas Building | 1969 | External gallery. East façade (exterior) | Column | 1 | n.a. | No coatings/0 mm | |
Wall | 1 | n.a. | No coatings/0 mm | |||||
Garage. −2 floor (interior) | Columns | 4 | n.a. | No coatings/0 mm | ||||
Wall | 1 | n.a. | No coatings/0 mm | |||||
FCG (1975) | Calouste Gulbenkian Foundation Headquarters and Museum | 1969 | Auditorium ventilation shafts. −2 floor (interior) | Walls | n.a. | 4 | Plasters and painting layers/up to 10 mm | |
Headquarters garage. Technical room. −2 floor (interior) | n.a. | 3 | Plasters/up to 35 mm | |||||
ISCJ (1975) | Sagrado Coração de Jesus Church | 1970 | 7th-floor terrace (exterior) | Wall | 1 | n.a. | No coatings/0 mm | |
JRP (1987) | Jacob Rodrigues Pereira Institute | 1987 | Swimming pool surrounding area (interior) | Columns | n.a. | 7 | Painting layers/up to 1 mm | |
PCV (1998) | The Knowledge Pavilion | 1998 | 2nd-floor terrace (exterior) | White concrete walls | 4 | n.a. | No coatings/0 mm | |
Ground floor. South façade (exterior) | 2 | n.a. | No coatings/0 mm | |||||
Garage. −1 floor (interior) | Columns | n.a. | 4 | Plasters/up to 5 mm | ||||
Technical room. −1 floor (interior) | n.a. | 2 | Plasters/up to 5 mm | |||||
C8 (2000) | C8 Building (Faculty of Sciences of the University of Lisbon) | 2000 | 1st floor. Structure A (interior) | Walls | n.a. | 1 | Painting layers/up to 1 mm | |
1st floor. Structure B (interior) | n.a. | 2 | Painting layers/up to 1 mm | |||||
1st floor. Structure C (interior) | n.a. | 1 | Painting layers/up to 1 mm | |||||
1st floor. Structure D (interior) | n.a. | 2 | Painting layers/up to 1 mm | |||||
AS (2001) | Atrium Saldanha Building | 1997 | 5th floor. Hub 2 (interior) | White concrete column | 2 | n.a. | No coatings/0 mm | |
Garage. −4 floor (interior) | Column | 1 | n.a. | No coatings/0 mm | ||||
Walls | 5 | n.a. | No coatings/0 mm | |||||
UNL (2002) | Rectory of the New University of Lisbon | 2002 | Air treatment unit. 1st-floor (interior) | Walls | n.a. | 2 | Plasters/up to 30 mm | |
Ground floor storage (interior) | 1 | n.a. | No coatings/0 mm | |||||
Garage. −1 floor (interior) | Earth supporting walls | 1 | n.a. | No coatings/0 mm | ||||
Garage. −2 floor (interior) | 2 | n.a. | No coatings/0 mm |
Parameters | Gray Concrete | White Concrete | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case study | IRF (1938) | DN (1940) | LIP (1958) | EUA53 (1970) | FRAN (1971) | ISCJ (1975) | FCG (1975) | JRP (1987) | PCV (1998) | C8 (2000) | AS (2001) | UNL (2002) | PCV (1998) | AS (2001) |
Average dimension (mm) | 50.0 | 42.5 | 60.3 | 50.0 | 46.0 | 45.0 | 30.6 | 32.9 | 30.0 | 24.7 | 22.7 | 22.5 | 11.7 | 22.5 |
S.D. (σ) | 8.2 | 2.9 | 17.4 | 14.1 | 17.2 | 2.5 | 3.5 | 11.0 | 6.3 | 4.5 | 2.6 | 5.2 | 2.6 | 3.5 |
Parameters | Non-Architectural Concrete | Architectural Concrete | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case study | IRF (1938) | DN (1940) | LIP (1958) | EUA53 (1970) | FCG (1975) | JRP (1987) | PCV (1998) | C8 (2000) | UNL (2002) | FRAN (1971) | ISCJ (1975) | PCV (1998) | AS (2001) | UNL (2002) |
Carbonation depth (mm) | 26.9 | 10.5 | 15.3 | 1.2 | 1.5 | 12.2 | 15.8 | 6.1 | 16.8 | 11.4 | 10.7 | 2.5 | 2.6 | 15.2 |
S.D. (σ) | 10.4 | 10.2 | 9.4 | 1.2 | 0.5 | 8.3 | 9.9 | 4.2 | 8.7 | 6.6 | 5.1 | 2.1 | 1.8 | 5.7 |
Parameters | Gray Concrete | White Concrete | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Case study | IRF (1938) | DN (1940) | LIP (1958) | EUA53 (1970) | FRAN (1971) | FCG (1975) | ISCJ (1975) | JRP (1987) | PCV (1998) | C8 (2000) | AS (2001) | UNL (2002) | PCV (1998) | AS (2001) |
P0 (%) | 13.78 | 13.38 | 10.82 | 11.60 | 13.02 | 13.64 | n.a. | 20.02 | 14.86 | 14.21 | 15.54 | 15.75 | 13.77 | 13.30 |
S.D. (σ) | 1.51 | 2.14 | 1.61 | n.a. | 2.04 | 0.67 | n.a. | 2.60 | 1.30 | 0.53 | 0.41 | 0.78 | n.a. | n.a. |
Pb (kg/m3) | 2302.27 | 2286.01 | 2379.81 | 2363.18 | 2306.50 | 2279.22 | n.a. | 2110.31 | 2258.08 | 2267.04 | 2220.48 | 2229.24 | 2262.81 | 2300.23 |
S.D. (σ) | 49.72 | 66.74 | 42.37 | n.a. | 61.87 | 22.99 | n.a. | 74.70 | 35.55 | 13.31 | 16.50 | 23.65 | n.a. | n.a. |
V (m/s) | 4103.20 | 4093.41 | 4652.52 | 4512.94 | 4816.02 | 4853.85 | n.a. | 3792.04 | 4555.49 | 4415.99 | 4512.20 | 4862.32 | 4684.49 | 4406.98 |
S.D. (σ) | 805.37 | 270.77 | 169.43 | n.a | 297.55 | 180.46 | n.a. | 456.72 | 124.04 | 207.92 | 102.79 | 191.88 | n.a. | n.a. |
W.A. at 15 min (Kg/m2) | 1.18 | 1.27 | 1.16 | 0.41 | 0.61 | 0.46 | n.a. | 1.45 | 0.51 | 0.68 | 0.58 | 0.40 | 0.55 | 0.45 |
S.D. (σ) | 0.01 | 0.93 | 0.47 | n.a. | 0.18 | 0.14 | n.a. | 0.49 | 0.10 | 0.16 | 0.15 | 0.08 | n.a. | n.a. |
W.A. at 60 min (Kg/m2) | 1.88 | 1.97 | 1.80 | 0.74 | 0.93 | 0.76 | n.a. | 2.52 | 0.84 | 1.15 | 0.97 | 0.61 | 0.90 | 0.91 |
S.D. (σ) | 0.05 | 1.36 | 0.55 | n.a. | 0.24 | 0.21 | n.a. | 0.84 | 0.18 | 0.29 | 0.18 | 0.12 | n.a. | n.a. |
W.A. at 1440 min = 24h (Kg/m2) | 5.41 | 4.45 | 3.63 | 3.15 | 2.64 | 2.09 | n.a. | 9.13 | 2.48 | 4.19 | 3.47 | 1.61 | 2.71 | 3.33 |
S.D. (σ) | 1.29 | 1.40 | 0.52 | n.a. | 0.67 | 0.49 | n.a. | 2.35 | 0.60 | 1.11 | 0.58 | 0.42 | n.a. | n.a. |
Parameters | Gray Concrete | White Concrete | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Superstructure | S.W. | Superstructure | |||||||||||||
Case study | IRF (1938) | DN (1940) | LIP (1958) | EUA53 (1970) | FRAN (1971) | FCG (1975) | ISCJ (1975) | JRP (1987) | PCV (1998) | C8 (2000) | AS (2001) | UNL (2002) | UNL (2002) | PCV (1998) | AS (2001) |
(MPa) | 28.30 | 32.10 | 35.80 | n.a | 60.43 | 69.58 | n.a | 27.17 | 57.13 | 60.20 | 61.90 | 67.47 | 76.10 | 65.00 | n.a |
S.D. (σ) | 4.81 | n.a | 7.39 | n.a | 9.46 | 14.90 | n.a | 13.32 | 7.03 | 14.45 | 2.26 | 4.42 | n.a | n.a | n.a |
Ec (GPa) | 18.50 | 17.30 | 28.60 | n.a | 33.80 | 37.20 | n.a | 17.55 | 34.37 | 28.10 | 31.63 | 37.50 | n.a | 35.50 | n.a |
S.D. (σ) | n.a | n.a | 0.71 | n.a | 1.70 | 1.57 | n.a | 9.40 | 1.96 | n.a. | 0.81 | 0.00 | n.a | n.a | n.a |
Parameters | Gray Concrete | White Concrete | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Superstructure | S.W. | Superstructure | |||||||||||
Case study | IRF (1938) | DN (1940) | LIP (1958) | FRAN (1971) | FCG (1975) | ISCJ (1975) | JRP (1987) | PCV (1998) | C8 (2000) | AS (2001) | UNL (2002) | UNL (2002) | PCV (1998) |
t (days) * | 30,295 | 29,565 | 23,360 | 18,980 | 18,980 | 18,615 | 12,410 | 8395 | 7665 | 8760 | 6935 | 6935 | 8395 |
Prescribed concrete class | (a) | (a) | (a) | B300 | B300 | B300 | B225 | n.a. | B30 | B40 | B30 | B25 | B35 |
βcc | 1.214 | 1.214 | 1.213 | 1.212 | 1.212 | 1.212 | 1.210 | 1.207 | 1.207 | 1.208 | 1.206 | 1.206 | 1.207 |
Prescribed compressive strength (MPa) | 17.65 | 17.65 | 17.65 | 29.42 | 29.42 | 29.42 | 22.06 | n.a. | 30.00 | 40.00 | 30.00 | 25.00 | 35.00 |
fcm (t) ** (MPa) | 28.30 | 32.10 | 35.80 | 60.43 | 69.58 | n.a. | 27.17 | 57.13 | 60.20 | 61.90 | 67.47 | 76.10 | 65.00 |
fcm (28d) (MPa) | 19.81 | 22.48 | 25.09 | 42.36 | 48.81 | n.a. | 9.11 | (b) | 42.40 | 43.57 | 53.64 | 47.58 | 45.76 |
fck (28d) (MPa) | (c) | (c) | (c) | 35.80 | 42.25 | n.a. | 12.55 | (b) | 35.84 | 37.01 | 47.08 | 41.02 | 39.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, L.; Silva, A.S.; Veiga, M.d.R.; Vieira, M.; Mirão, J. Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability. Constr. Mater. 2022, 2, 127-147. https://doi.org/10.3390/constrmater2030010
Almeida L, Silva AS, Veiga MdR, Vieira M, Mirão J. Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability. Construction Materials. 2022; 2(3):127-147. https://doi.org/10.3390/constrmater2030010
Chicago/Turabian StyleAlmeida, Luís, António Santos Silva, Maria do Rosário Veiga, Manuel Vieira, and José Mirão. 2022. "Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability" Construction Materials 2, no. 3: 127-147. https://doi.org/10.3390/constrmater2030010
APA StyleAlmeida, L., Silva, A. S., Veiga, M. d. R., Vieira, M., & Mirão, J. (2022). Physical and Mechanical Properties of Reinforced Concrete from 20th-Century Architecture Award-Winning Buildings in Lisbon (Portugal): A Contribution to the Knowledge of Their Evolution and Durability. Construction Materials, 2(3), 127-147. https://doi.org/10.3390/constrmater2030010