# Parametric Study of Lateral Load on Helical Pipe Piles in Clay

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Background

_{2}) [2]. It is reported that fossil fuel power generation and construction industries account for a large portion of the world’s CO

_{2}emissions [3,4]. Therefore, developing clean energy solutions and improving emissions from the construction sector are crucial steps for countries to meet carbon emission standards.

#### 1.2. Research Purpose and Significance

## 2. Parameter Setting for FEM Simulation of Piles

#### 2.1. Parameters of Steel Pipe Pile and Helical Pipe Pile

^{−9}t/mm

^{3}, respectively.

#### 2.2. Real Clay State of Steel Pipe Pile and Helical Pipe Pile

#### 2.3. Model Setup for FEM Numerical Simulation

## 3. Parametrical Study of Steel Pipe Piles and Helical Pipe Piles

#### 3.1. Numerical Simulation Results of Steel Pipe Piles

#### 3.1.1. Effect of Young’s Modulus in Steel Pipe Piles

#### 3.1.2. Effect of Cohesion in Steel Pipe Pile

_{ult}) of steel pipe piles, as shown in Equation (1).

_{ult}= Ultimate bearing capacity of steel pipe pile in clay; $\Delta \frac{y}{x}$ = 0.2052 (10 ≤ C ≤ 50); =0.0953 (50 < C ≤ 120); C = Cohesion of clay.

#### 3.2. Numerical Simulation Results of Helical Pipe Pile

#### 3.2.1. Effect of Young’s Modulus on Helical Pipe Pile

#### 3.2.2. Effect of Cohesion in Helical Pipe Pile

_{ult-helical}) of helical pipe piles and clay cohesion (C), as proposed in Equation (2). However, the difference is the slope (0.2375, 10 $\le $ C $\le $ 50 kPa; 0.1163, 50 < C ≤ 120 kPa). It should be mentioned that the trendline equation in Figure 12 is for a clearer observation of the slope.

_{ult-helical}= Ultimate bearing capacity of helical pipe pile in clay; $\Delta \frac{y}{x}$ = 0.2375 (10 kPa ≤ C ≤ 50 kPa); =0.1163 (50 kPa < C ≤ 120 kPa); C = Cohesion of clay.

#### 3.3. Comparison between the Steel Pile and Helical Pipe Pile

## 4. Comparison of the Real Clay State Regarding Steel Pipe Pile and Helical Pipe Pile

## 5. Conclusions and Recommendations

- When values of cohesion are fixed, the capacity of steel as well as helical pipe piles both increase with the Young’s modulus. The capacity improvement or increment rate is very close.
- When Young’s modulus value is fixed, both circular tube piles and helical pipe piles increase with the increase in the cohesion parameter; however, the capacity increment rate is different. It was found that 50 kPa is the boundary value. In detail, when soil cohesion is greater than 50 kPa, the horizontal bearing capacity of both piles increases at a smaller rate with the increase in cohesion. The increment rate (slope gradient) for both types of piles is proposed.

- Helical piles show better results than steel pipe piles in the same type of soil.
- Both types of piles demonstrate better capacity when the soil strength parameter is increased. But the capacity increment range is different; the helical pile capacity increment with that specific geometry is greater than that of a normal steel pipe pile.

- The pile capacity of both types of piles will be greater when they are installed in good-strength soil. The greater increment rate for both types of piles is found when piles are installed in firm to very stiff soil.
- By adding a helix to the pipe pile and installing it in very stiff to hard clay, the pile capacity under the specific geometry shows a greater value of 5.3 kN (Figure 16).

- This study only considers the theoretical results under ideal conditions.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Hart, R. Non-renewable resources in the long run. J. Econ. Dyn. Control
**2016**, 71, 1–20. [Google Scholar] [CrossRef] - Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper SC, B.; Frieler, K.; Knutti, R.; Frame, D.J.; Allen, M.R. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature
**2009**, 458, 1158–1162. [Google Scholar] [CrossRef] [PubMed] - International Energy Agency. Global Electricity Review 2021; International Energy Agency: Paris, France, 2021; p. 15. Available online: https://www.iea.org/reports/global-electricity-review-2021 (accessed on 19 October 2023).
- Shaikh, F.U.A.; Vimonsatit, V. Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire Mater.
**2015**, 39, 174–188. [Google Scholar] [CrossRef] - Rajapakse, R.A. Pile Design and Construction Rules of Thumb; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar]
- Spagnoli, G.; de Hollanda Cavalcanti Tsuha, C. A review on the behavior of helical piles as a potential offshore foundation system. Mar. Georesour. Geotechnol.
**2020**, 38, 1013–1036. [Google Scholar] [CrossRef] - El-Rahim, A.; Hamdy, H.A.; Taha, Y.K. The compression and uplift bearing capacities of helical piles in cohesionless soil. J. Eng. Sci.
**2013**, 41, 2055–2064. [Google Scholar] [CrossRef] - Perko, H.A. Helical Piles: A Practical Guide to Design and Installation; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Livneh, B.; El Naggar, M.H. Axial testing and numerical modeling of square shaft helical piles under compressive and tensile loading. Can. Geotech. J.
**2008**, 45, 1142–1155. [Google Scholar] [CrossRef] - Sakr, M. Performance of helical piles in oil sand. Can. Geotech. J.
**2009**, 46, 1046–1061. [Google Scholar] [CrossRef] - Vignesh, V.; Mayakrishnan, M. Design parameters and behavior of helical piles in cohesive soils—A review. Arab. J. Geosci.
**2020**, 13, 1194. [Google Scholar] [CrossRef] - Li, L.; Sui, G.; Zhou, J.; Oh, E. Parametric Study of Lateral Loaded Blade Pile in Clay. Geosciences
**2022**, 12, 329. [Google Scholar] [CrossRef] - Nasr, M. Performance-based design for helical piles. In Proceedings of the Contemporary Topics in Deep Foundations, Orlando, FL, USA, 15–19 March 2009; pp. 496–503. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bosnjak, D.; Bromwich, D. Analysis and design methods of screw piles: A review. Soils Found.
**2016**, 56, 115–128. [Google Scholar] [CrossRef] - Lutenegger, A.J. Cylindrical shear or plate bearing?—Uplift behavior of multi-helix screw anchors in clay. In Proceedings of the Contemporary Topics in Deep Foundations, Orlando, FL, USA, 15–19 March 2009; pp. 456–463. [Google Scholar]
- Rao, S.N.; Prasad, Y.V.S.N.; Veeresh, C. Behaviour of embedded model screw anchors in soft clays. Geotechnique
**1993**, 43, 605–614. [Google Scholar] [CrossRef] - Rao, S.N.; Prasad, T.V.S.N.; Shetty, M.D. The behaviour of model screw piles in cohesive soils. Soils Found.
**1991**, 31, 35–50. [Google Scholar] [CrossRef] [PubMed] - Hird, C.C.; Stanier, S.A. Modelling helical screw piles in clay using a transparent soil. In Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland, 27 June 2010–2 July 2010; Volume 6. [Google Scholar]
- Merifield, R.S. Ultimate uplift capacity of multiplate helical type anchors in clay. J. Geotech. Geoenviron. Eng.
**2011**, 137, 704–716. [Google Scholar] [CrossRef] - Trofimenkov, J.G.; Mariupolskii, L.G. Screw piles used for mast and tower foundations. In Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, QC, Canada, 8–15 September 1965. [Google Scholar]
- Nazir, R.; Chuan, H.S.; Niroumand, H.; Kassim, K.A. Performance of single vertical helical anchor embedded in dry sand. Meas. J. Int. Meas. Confed.
**2014**, 49, 42–51. [Google Scholar] [CrossRef] - Pack, J.S. Design of helical piles for heavily loaded structures. In Proceedings of the New Technological and Design Developments in Deep Foundations, Denver, CO, USA, 5–8 August 2000; pp. 353–367. [Google Scholar]
- Perlow, M., Jr. Helical pile acceptance criteria, design guidelines, and load test verification. In Proceedings of the Geo-Frontiers 2011: Advances in Geotechnical Engineering, Dallas, TX, USA, 13–16 March 2011; pp. 94–102. [Google Scholar]
- Prasad, Y.V.S.N.; Rao, S.N. Lateral capacity of helical piles in clays. J. Geotech. Eng.
**1996**, 122, 938. [Google Scholar] [CrossRef] - Abdrabbo, F.; El Wakil, A. Laterally loaded helical piles in sand. Alex. Eng. J.
**2016**, 55, 3239–3245. [Google Scholar] [CrossRef] - Wang, T.; Liu, J.; Luo, Q.; Wang, Q.; Zhang, L.; Qi, W. Calculation for frost jacking resistance of single helical steel piles in cohesive soils. J. Cold Reg. Eng.
**2021**, 35, 06021001. [Google Scholar] [CrossRef] - Sirivachiraporan, A.; Wattanachannarong, C. The using of ground screw pile as mounting structure foundation in solar PV farm. In Proceedings of the International Congress on Engineering and Information, Osaka, Japan, 10–12 May 2016. [Google Scholar]
- Feng, S.J.; Fu, W.D.; Chen, H.X.; Li, H.X.; Xie, Y.L.; Lv, S.F.; Li, J. Field tests of micro screw anchor piles under different loading conditions at three soil sites. Bull. Eng. Geol. Environ.
**2021**, 80, 127–144. [Google Scholar] [CrossRef] - AS 4100:2020; Steel Structures. Standards Australia: Sydney, Australia, 2000.
- Look, B. Handbook of Geotechnical Investigation and Design Tables, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar] [CrossRef]

**Figure 3.**Sectional view of the helical pipe pile with an enlarged view highlighting the diameter, thickness of the pile, and helix pitch.

**Figure 5.**Lateral displacement of steel pipe piles: (

**a**) cohesion of 10 kPa; (

**b**) cohesion of 30 kPa; (

**c**) cohesion of 50 kPa; (

**d**) cohesion of 100 kPa.

**Figure 6.**Relationship between Young’s modulus and the ultimate bearing capacity of the steel pipe pile.

**Figure 7.**Lateral displacement of steel pipe piles (

**a**) Young’s modulus of 30 MPa; (

**b**) Young’s modulus of 50 MPa; (

**c**) Young’s modulus of 80 MPa; (

**d**) Young’s modulus of 100 MPa.

**Figure 9.**Lateral displacement of helical pipe piles: (

**a**) cohesion of 10 kPa; (

**b**) cohesion of 30 kPa; (

**c**) cohesion of 50 kPa; (

**d**) cohesion of 100 kPa.

**Figure 11.**Lateral displacement of helical pipe piles (

**a**) Young’s modulus of 30 MPa; (

**b**) Young’s modulus of 50 MPa; (

**c**) Young’s modulus of 80 MPa; (

**d**) Young’s modulus of 100 MPa.

**Figure 13.**Lateral displacement of helical pipe piles and steel pipe piles: (

**a**) cohesion of 10 MPa; (

**b**) cohesion of 30 MPa; (

**c**) cohesion of 50 MPa; (

**d**) cohesion of 100 MPa.

**Figure 14.**Lateral displacement of helical pipe piles and steel pipe piles: (

**a**) Young’s modulus of 30 MPa; (

**b**) Young’s modulus of 50 MPa; (

**c**) Young’s modulus of 80 MPa; (

**d**) Young’s modulus of 100 MPa.

Geometric Parameters | Steel Pipe Pile | Helical Pipe Pile |
---|---|---|

Outside Diameter (mm) | 76.1 | 76.1 |

Length of Shaft (mm) | 1500 | 1500 |

Thickness of the Pile (mm) | 4 | 4 |

Helix Pitch (mm) | N/A | 60 |

Number of Helical Plates | 0 | 1 |

Soil Cohesion (kPa) | Young’s Modulus (MPa) |
---|---|

c = 10 | E = 10, 15, 40, 80 and 100 |

c = 30 | E = 10, 15, 40, 80 and 100 |

c = 50 | E = 10, 15, 40, 80 and 100 |

c = 100 | E = 10, 15, 40, 80 and 100 |

Young’s Modulus (MPa) | Soil Cohesive (kPa) |
---|---|

E = 15 | c = 10, 20, 30, 50, 80 and 100 |

E = 40 | c = 10, 20, 30, 50, 80 and 100 |

E = 80 | c = 10, 20, 30, 50, 80 and 100 |

E = 100 | c = 10, 20, 30, 50, 80 and 100 |

Soil Type | Unit Weight (γ), kN/m^{3} | Soil Cohesion (c), kPa | Young’s Modulus (E), MPa |
---|---|---|---|

V.Soft | 16 | 10 | 10 |

Soft | 17 | 15 | 15 |

Firm | 18 | 30 | 30 |

Stiff | 19 | 80 | 80 |

V.Stiff | 19.5 | 150 | 150 |

Hard | 20 | 200 | 200 |

Cohesion (kPa) | Young’s Modulus (MPa) | ||||
---|---|---|---|---|---|

10 | 15 | 40 | 80 | 100 | |

Ultimate Bearing Capacity (kN) | |||||

c = 10 kPa | 2.0 | 2.1 | 2.5 | 3.3 | 3.6 |

c = 30 kPa | 4.8 | 5.1 | 5.9 | 7.7 | 8.2 |

c = 50 kPa | 8.2 | 8.9 | 9.8 | 11.5 | 12.1 |

c = 100 kPa | 12.0 | 12.8 | 14.3 | 16.4 | 17.7 |

Young’s Modulus (MPa) | Cohesion (kPa) | |||||
---|---|---|---|---|---|---|

10 | 15 | 40 | 80 | 100 | 120 | |

Ultimate Bearing Capacity (kN) | ||||||

E = 30 MPa | 2.1 | 4.2 | 6.4 | 10.1 | 14.5 | 15.9 |

E = 50 MPa | 2.6 | 4.8 | 6.9 | 10.8 | 15.8 | 17.2 |

E = 80 MPa | 3.3 | 5.5 | 7.7 | 11.5 | 16.4 | 18.3 |

E = 100 MPa | 3.6 | 5.9 | 8.2 | 12.1 | 17.7 | 19.5 |

Cohesion (kPa) | Young’s Modulus (MPa) | ||||
---|---|---|---|---|---|

10 | 15 | 40 | 80 | 100 | |

Ultimate Bearing Capacity (kN) | |||||

c = 10 kPa | 3.4 | 3.7 | 4.3 | 5.0 | 5.8 |

c = 30 kPa | 7.6 | 8.0 | 8.9 | 10.2 | 10.8 |

c = 50 kPa | 11.2 | 11.9 | 13.2 | 14.5 | 15.7 |

c = 100 kPa | 16.5 | 17.3 | 19.2 | 21.2 | 21.9 |

Young’s Modulus (MPa) | Cohesion (kPa) | |||||
---|---|---|---|---|---|---|

10 | 15 | 40 | 80 | 100 | 120 | |

Ultimate Bearing Capacity (kN) | ||||||

E = 30 MPa | 3.9 | 6.2 | 8.7 | 13.3 | 19.2 | 20.8 |

E = 50 MPa | 4.5 | 6.9 | 9.4 | 13.6 | 20.4 | 21.9 |

E = 80 MPa | 5.0 | 7.5 | 10.2 | 14.5 | 21.2 | 22.7 |

E = 100 MPa | 5.8 | 8.1 | 10.8 | 15.7 | 21.9 | 23.5 |

Cohesion (kPa) | Steel Pipe Pile | Helical Pipe Pile | Incremental (kN) | |||
---|---|---|---|---|---|---|

E10 to E100 | Range | E10 to E100 | Range | E10 | E100 | |

Ultimate Bearing Capacity (kN) | ||||||

c = 10 kPa | 2.0–3.6 | 1.6 | 3.4–5.8 | 2.4 | 1.4 | 2.2 |

c = 30 kPa | 4.8–8.2 | 3.4 | 7.6–10.8 | 3.2 | 2.8 | 2.6 |

c = 50 kPa | 8.2–12.1 | 3.9 | 11.2–15.7 | 4.5 | 3.6 | 3.6 |

c = 100 kPa | 12.0–17.7 | 5.7 | 16.5–21.9 | 5.4 | 4.2 | 4.2 |

Young’s Modulus (MPa) | Steel Pipe Pile | Helical Pipe Pile | Incremental (kN) | |||
---|---|---|---|---|---|---|

c10 to c120 | Range | c10 to c120 | Range | c10 | c120 | |

Ultimate Bearing Capacity (kN) | ||||||

E = 30 MPa | 2.1–15.9 | 13.8 | 3.9–20.8 | 16.9 | 1.8 | 4.9 |

E = 50 MPa | 2.6–17.2 | 14.6 | 4.5–21.9 | 17.4 | 1.9 | 4.7 |

E = 80 MPa | 3.3–18.3 | 15.0 | 5.0–22.7 | 17.7 | 1.7 | 4.4 |

E = 100 MPa | 3.6–19.5 | 15.9 | 5.8–23.5 | 17.7 | 2.2 | 4.0 |

Slope (Capacity/Cohesion) | ||
---|---|---|

10 ≤ C ≤ 50 (kPa) | 50 < C ≤ 120 (kPa) | |

Steel pipe pile | 0.2052 | 0.0953 |

Helical pipe pile | 0.2375 | 0.1163 |

Increments and Percentages | 15.74% | 22.04% |

Ultimate Bearing Capacity (kN) | ||||||
---|---|---|---|---|---|---|

V.Soft | Soft | Firm | Stiff | V.Stiff | Hard | |

E10-c10 | E15-c15 | E30-c30 | E80-c80 | E150-c150 | E200-c200 | |

Steel pipe pile | 2.0 | 3.1 | 6.4 | 13.6 | 20.1 | 22.4 |

Helical pipe pile | 3.4 | 4.8 | 8.7 | 17.9 | 25.4 | 27.7 |

Increase (%) | 70.00 | 54.84 | 35.94 | 31.62 | 26.37 | 23.66 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sui, G.; Li, L.; Zhou, J.; Oh, E.
Parametric Study of Lateral Load on Helical Pipe Piles in Clay. *Geotechnics* **2024**, *4*, 158-179.
https://doi.org/10.3390/geotechnics4010008

**AMA Style**

Sui G, Li L, Zhou J, Oh E.
Parametric Study of Lateral Load on Helical Pipe Piles in Clay. *Geotechnics*. 2024; 4(1):158-179.
https://doi.org/10.3390/geotechnics4010008

**Chicago/Turabian Style**

Sui, Guowei, Lin Li, Jialin Zhou, and Erwin Oh.
2024. "Parametric Study of Lateral Load on Helical Pipe Piles in Clay" *Geotechnics* 4, no. 1: 158-179.
https://doi.org/10.3390/geotechnics4010008