Development of Innovative Plate Load Testing Equipment for In-Situ Saturated Clays Soils
Abstract
:1. Introduction
2. Methodology
Laboratory Test Procedures
3. Results
3.1. Index Properties Test
3.2. Undrained Triaxial Compression Test
3.3. Laboratory Consolidation Test
3.4. Field Plate Load Testing Apparatus and Experimental Procedures
3.4.1. Conventional Plate Load Test
3.4.2. Innovative Field Plate Load Test
3.4.3. Numerical Plate Load Test Using PLAXIS Software
4. Discussion of Results
4.1. Laboratory Experiment
4.2. Conventional Plate Load Test
4.3. Innovative Field Plate Load Test
4.4. PLAXIS Software
Correlation of Field Plate load Test Device with the PLAXIS Model Numerical Simulation
4.5. Advantages of the Proposed Innovated Field Plate Load Test
- i.
- The equipment is portable, as it can be dismantled and moved from one position to the other even where access to the site is difficult.
- ii.
- Few numbers of personnel, i.e., not more than two people, can set-up and operate the equipment.
- iii.
- It has a great advantage when used on saturated clay deposits as it will allow for maximum deformation after dissipation of pore water pressure for each load application before increment of next loading.
- iv.
- Multiple plate load testing can be set-up simultaneously in multiple foundation trenches and the readings recorded simultaneously over the required period of time.
4.6. Limitations of the Proposed Innovated Field Plate Load Test
5. Conclusions
- The proposed innovative load bearing testing equipment was designed and fabricated to standard. All the component steel members were observed to resist maximum loading during testing without deformation or failure of any of the steel members.
- The soils from the three trial pits were classified as silt of low plasticity (ML), clay of low plasticity (CL) and clay of low plasticity (CL) for Trial pits 1, 2 and 3, respectively.
- The bearing capacities obtained from the CFPLT are close to the ultimate bearing capacities calculated from the laboratory triaxial tests. The bearing capacities from the proposed innovative plate load testing equipment, however, recorded lower bearing capacities. This is probably due to the long period allowed for each load before the next loading.
- Settlement values recorded for the CFPLT were observed to be lower than those recorded for the IFPLT. The CFPLT does not allow for sufficient time for the dissipation of pore water pressure and, therefore, limits the magnitude of the settlement.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lunne, T.; Anderson, K.H.; Strandvik, S.O. Effect of sample Disturbance and Consolidation Procedures on Measured Shear Strength of Soft Marine Norwegian Clays. Can. Geotech. J. 2011, 43, 726–750. [Google Scholar] [CrossRef]
- Carrol, R.; Long, M. Sample Disturbance Effects in Silt. J. Geotech. Geoenviron. Eng. 2017, 143, 4017061. [Google Scholar] [CrossRef]
- Koutsoftas, D. Discussion of “Effects of Sample Disturbance in Geotechnical Design”. Can. Geotech. J. 2019, 56, 275–289. [Google Scholar] [CrossRef]
- Karlsson, M.; Emdal, A.; Dijkstra, J. Consequences of Sample Disturbance for Predicting Long-term Settlements in Soft Clay. Can. Geotech. J. 2016, 53, 1965–1977. [Google Scholar] [CrossRef]
- Dasaka, S.M.; Jain, A.; Kolekar, Y.A. Effect of Uncertainties in the Field Load Testing on the Observed Load-Settlement Response. Indian Geotech. J. 2013, 44, 294–304. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Shuaibu, A.; Umaru, I.; Musa, S.; Lawal, I.M.; Abubakar, S. Stabilization of Soft Soil by Incinerated Sewage Sludge Ash from Municipal Wastewater Treatment Plant for Engineering Construction. Sustain. Struct. Mater. 2019, 2, 32–44. [Google Scholar]
- Smith-Pardo, J.P.; Bobet, A. Behavior of Rigid Footings on Gravel under Axial Load and Moment. J. Geotech. Geoenviron. Eng. 2007, 133, 1203–1215. [Google Scholar] [CrossRef]
- Mohite, N.R.; Admane, S. Plate Load Test on Undisturbed Soil Sample. Int. J. Sci. Eng. Technol. Res. 2015, 4, 1042–1045. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Abubakar, S.; Birniwa, A.H.; Lawal, I.M.; Umaru, I.; Usman, A.K.; Yaro, N.S.A.; Al-Zaqri, N.; Al-Maswari, B.M.; et al. Synthesis, Characterization, and Performance Evaluation of Hybrid Waste Sludge Biochar for COD and Color Removal from Agro-Industrial Effluent. Separations 2022, 9, 258. [Google Scholar] [CrossRef]
- Umaru, I.; Babawuya, A.; Alhaji, M.M.; Alhassan, M.; Adejumo, T.W.; Lawal, S.S. Design of In-situ Load Bearing Capacity Mechanism. On Economic Downturn as a Result of COVID-19: The Role of Mechanical Engineers in Recovery. In Proceedings of the 5th International Virtual Conference of Nigerian Institution of Mechanical Engineers, Minna Chapter, Virtual Conference, 19 December 2020; Volume 5, pp. 27–42. [Google Scholar]
- Pinheiro, M.; Proskin, S.; Li, B. Laboratory Plate Load Testing of Non-Segregating Tailings. In Proceedings of the 21st International Conference Tailings & Mine Waste, Bannf, AB, Canada, 5–8 November 2017; pp. 1–10. [Google Scholar]
- Shalaby, S.I. A comparison between the behavior of laboratory and field plate load tests on collapsing soils. Conf. Pap. Res. Net Publ. 2017, 1–9. [Google Scholar]
- Mohammed, A.S. Evaluation of Allowable Bearing Capacity of Soil by Plate Bearing Test. A Case Study in Al-diwaniyah City. Basrah J. Eng. Sci. 2020, 13, 101–111. [Google Scholar]
- Albuquerque, P.J.R.; Noguchi, L.T.; Mucheti, A.S. Behavior of Plate Load Test in Sedimentary Soil/Brazil. In From Fundamentals to Application in Geotechnics; IOS Press: Amsterdam, The Netherlands, 2015; p. 285735597. [Google Scholar]
- Tuse, B.B.; Path, A.P.; Parche, D.D. Compilation of Plate Bearing Test Data. Int. J. Adv. Sci. Eng. Technol. 2016, 4, 74–77. [Google Scholar]
- Barnard, H.F.T.; Heyman, G. The Effect of Bedding Errors on the Accuracy of Plate Load Tests. J. Civ. Eng. 2015, 57, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Jagaba, A.; Kutty, S.; Hayder, G.; Baloo, L.; Noor, A.; Yaro, N.; Saeed, A.; Lawal, I.; Birniwa, A.; Usman, A. A Systematic Literature Review on Waste-to-Resource Potential of Palm Oil Clinker for Sustainable Engineering and Environmental Applications. Materials 2021, 14, 4456. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.A.M.; Costa, C.M.L.; Costa, Y.D.J. Dimension Effect on Plate Load Test Results. In Proceedings of the 2nd World Congress on Civil, Structural, and Environmental Engineering, Barcelona, Spain, 2–4 April 2017; Volume 191, pp. 1–6. [Google Scholar]
- Kwiecien, S.; Segalini, A. Influence of Load Plates Diameters Shapes of Columns and Columns Spacing on Results of Load Plate Tests of Columns Formed by Dynamic Replacments. Sensors 2021, 21, 4868. [Google Scholar] [CrossRef]
- Lehmann, S.; Leppla, S.; Norkus, A. Experimental Study of the Modulus of Deformation Determined by Static and Dynamic Plate Load Tests. Balt. J. Road Bridge Eng. 2020, 15, 109–124. [Google Scholar] [CrossRef]
- Ahn, J.; Cote, B.M.; Robinson, B.; Gabr, M.A.; Borden, R.H. Inverse Analysis of Plate Load Tests to Assess Subgrade Resilient Modulus. Transp. Res. Rec. J. Transp. Res. Board 2009, 2101, 110–117. [Google Scholar] [CrossRef]
- Tuse, B.B.; Lokande, A.B.; Ghane, V.R.; Parkhe, D.D.; Birajdar, C.A. Investigation of Bearing Capacity by Plate Load Test—A Case Study. Int. Conf. Recent Innov. Sci. Eng. Technol. 2017, 1–4. [Google Scholar]
- Ali, N.A. Practical Engineering Behavior of Egyptian Collapsible Soils, Laboratory and In-Situ Experimental Study. Open J. Civ. Eng. 2021, 11, 290–300. [Google Scholar] [CrossRef]
- Panigrahi, B.; Pradhan, P.K. Improvement of Bearing Capacity of Soil by using Natural Geotextile. Int. J. Geo Eng. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Isah, A.S.; Lawal, I.M.; Birniwa, A.H.; Usman, A.K.; Abubakar, S. Kinetics of Pulp and Paper Wastewater Treatment by High Sludge Retention Time Activated Sludge Process. J. Hunan Univ. Nat. Sci. 2022, 49, 242–251. [Google Scholar] [CrossRef]
- Dasaka, S.M. Risk Analysis of Bearing Capacity of Shallow Foundations. Workshop Emerg. Trends Geotech. Eng. Guwahati 2012, 8, 89–97. [Google Scholar]
- Umaru, I.; Alhaji, M.M.; Alhassan, M.; Adejumo TW, E.; Babawuya, A.; Jagaba, A.H.; Lawal, I.M.; Abubakar, S.; Shehu, A. Simulation of Bearing Capacity and Settlement of Soil from Model Plate Load Test. In Proceedings of the 4th Sustainability and Resilience Conference: Design Innovation, Online, 1–2 November 2022. [Google Scholar]
- BS 1377; Methods of Testing Soil for Civil Engineering Purposes. British Standards Institute: London, UK, 1990.
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Hayder, G.; Birniwa, A.H.; Taha, A.T.B.; Mnzool, M.; Lawal, I.M. Waste Derived Biocomposite for Simultaneous Biosorption of Organic Matter and Nutrients from Green Straw Biorefinery Effluent in Continuous Mode Activated Sludge Systems. Processes 2022, 10, 2262. [Google Scholar] [CrossRef]
- ASTM D1194-94; Standard Test Method for Bearing Capacity of Soil for Static Load and Spread Footings. Annual Book of ASTM Standard. American Society for Testing Materials: Philadelphia, PA, USA, 2003.
- Terzaghi, K. Evaluation of coefficients of subgrade reaction. Géotechnique 1955, 5, 297–326. [Google Scholar] [CrossRef]
- Kumar, K.S.P.; Anbese, T.W. Mathematical Psychiatry of Field Plate Load Test Using Finite Element Method. Malays. J. Civ. Eng. 2015, 27, 193–203. [Google Scholar]
- Nwokediuko, N.M.; Ogirigbo, O.R.; Inerhunwa, I. Load-settlement Characteristics of Tropical Red Soils of Southern Nigeria. Eur. J. Eng. Res. Sci. 2019, 4, 107–113. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Aminu, N.; Noor, A.; Al-Dhawi, B.N.S.; Usman, A.K.; Batari, A.; Abubakar, S.; Birniwa, A.H.; et al. Diverse sustainable materials for the treatment of petroleum sludge and remediation of contaminated sites: A review. Clean. Waste Syst. 2022, 2, 100010. [Google Scholar] [CrossRef]
- Warmate, T. Bearing Capacity Determination using Plate Load Test in Calabar, Southeastern Nigeria. Electron. J. Geotech. Eng. 2014, 19, 4577–4588. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Naushad, M.; Lawal, I.M.; Noor, A.; Affam, A.C.; Birniwa, A.H.; Abubakar, S.; Soja, U.B.; Abioye, K.J.; et al. Removal of nutrients from pulp and paper biorefinery effluent: Operation, kinetic modelling and optimization by response surface methodology. Environ. Res. 2022, 214, 114091. [Google Scholar] [CrossRef]
- BS 8004; Code of Practices for Foundations in Civil Engineering Purposes. British Standards Institute: London, UK, 1986.
- Cabalar, A.F.; Abdulnafaa, M.D.; Isbuga, V. Plate Loading Tests on Clay with Construction and Demolition Materials. Arab. J. Sci. Eng. 2020, 46, 4307–4317. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Mohammad, R.E.A.; Ali, M.; Rehman, M.F.; Abdullahi, S.S.A.; Eldin, S.M.; Mamman, S.; Sadiq, A.C.; Jagaba, A.H. Synthesis of Gum Arabic Magnetic Nanoparticles for Adsorptive Removal of Ciprofloxacin: Equilibrium, Kinetic, Thermodynamics Studies, and Optimization by Response Surface Methodology. Separations 2022, 9, 322. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abdullahi, S.S.; Yakasai, M.Y.; Ismaila, A. Studies on physico-mechanical behaviour of kenaf/glass fiber reinforced epoxy hybrid composites. Bull. Chem. Soc. Ethiop. 2021, 35, 171–184. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Noor, A.; Abubakar, S.; Lawal, I.M.; Umaru, I.; Usman, A.K.; Kumar, V.; Birniwa, A.H. Effect of Hydraulic Retention Time on the Treatment of Pulp and Paper Industry Wastewater by Extended Aeration Activated Sludge System. In Proceedings of the 2021 Third International Sustainability and Resilience Conference: Climate Change (IEEE 2021), Sakheer, Bahrain, 15–16 November 2021; pp. 221–224. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Baloo, L.; Birniwa, A.H.; Lawal, I.M.; Aliyu, M.K.; Yaro, N.S.A.; Usman, A.K. Combined treatment of domestic and pulp and paper industry wastewater in a rice straw embedded activated sludge bioreactor to achieve sustainable development goals. Case Stud. Chem. Environ. Eng. 2022, 6, 100261. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Napiah, M.; Sutanto, M.H.; Usman, A.; Mizwar, I.K.; Umar, A.M. Engineering Properties of Palm Oil Clinker Fine-Modified Asphaltic Concrete Mixtures. J. Eng. Technol. Sci. 2022, 54, 220205. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Isa, M.H.; Ghaleb, A.A.S.; Lawal, I.M.; Usman, A.K.; Birniwa, A.H.; Noor, A.; Abubakar, S.; Umaru, I.; et al. Toxic Effects of Xenobiotic Compounds on the Microbial Community of Activated Sludge. ChemBioEng Rev. 2022, 9, 497–535. [Google Scholar] [CrossRef]
- Abdullahi, S.S.; Musa, H.; Habibu, S.; Birniwa, A.H.; Mohammad, R.E.A. Comparative study and dyeing performance of as-synthesized azo heterocyclic monomeric, polymeric, and commercial disperse dyes. Turk. J. Chem. 2022, 46, 1841–1852. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Affam, A.C.; Ghfar, A.A.; Usman, A.K.; Lawal, I.M.; Birniwa, A.H.; Kankia, M.U.; Afolabi, H.K.; et al. Parametric optimization and kinetic modelling for organic matter removal from agro-waste derived paper packaging biorefinery wastewater. Biomass Convers. Biorefinery 2022, 1–18. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abubakar, A.S.; Mahmud, H.N.M.E.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.A.; Zango, Z.U. Application of Agricultural Wastes for Cationic Dyes Removal from Wastewater. In Textile Wastewater Treatment; Springer: Singapore, 2022; pp. 239–274. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Isa, M.H.; Affam, A.C.; Aminu, N.; Abubakar, S.; Noor, A.; Lawal, I.M.; Umaru, I.; Hassan, I. Effect of environmental and operational parameters on sequential batch reactor systems in dye degradation. In Dye Biodegradation, Mechanisms and Techniques; Springer: Berlin/Heidelberg, Germany, 2022; pp. 193–225. [Google Scholar]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Al-Sabaeei, A.M.; Rafiq, W. Mixture Design-Based Performance Optimization via Response Surface Methodology and Moisture Durability Study for Palm Oil Clinker Fine Modified Bitumen Asphalt Mixtures. Int. J. Pavement Res. Technol. 2022, 1–28. [Google Scholar] [CrossRef]
- Jagaba, A.; Kutty, S.; Lawal, I.; Abubakar, S.; Hassan, I.; Zubairu, I.; Umaru, I.; Abdurrasheed, A.; Adam, A.; Ghaleb, A.; et al. Sequencing batch reactor technology for landfill leachate treatment: A state-of-the-art review. J. Environ. Manag. 2021, 282, 111946. [Google Scholar] [CrossRef]
- Abdullahi, S.S.; Musa, H.; Habibu, S.; Birniwa, A.H.; Mohammad, R.E.A. Facile synthesis and dyeing performance of some disperse monomeric and polymeric dyes on nylon and polyester fabrics. Bull. Chem. Soc. Ethiop. 2022, 35, 485–497. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Mahmud, H.N.M.E.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.M.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers 2022, 14, 3362. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Jagaba, A.H.; Al-Sabaeei, A.M. Application and circular economy prospects of palm oil waste for eco-friendly asphalt pavement industry: A review. J. Road Eng. 2022, 2, 309–331. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Lawal, I.M.; Birniwa, A.H.; Affam, A.C.; Yaro, N.S.A.; Usman, A.K.; Umaru, I.; Abubakar, S.; Noor, A. Circular economy potential and contributions of petroleum industry sludge utilization to environmental sustainability through engineered processes—A review. Clean. Circ. Bioecon. 2022, 3, 100029. [Google Scholar] [CrossRef]
- Al-dhawi, B.N.S.; Kutty, S.R.M.; Baloo, L.; Almahbashi, N.M.Y.; Ghaleb, A.A.S.; Jagaba, A.H.; Kumar, V.; Saeed, A.A.H. Treatment of synthetic wastewater by using submerged attached growth media in continuous activated sludge reactor system. Int. J. Sustain. Build. Technol. Urban Dev. 2022, 13, 2–10. [Google Scholar]
- Birniwa, A.H.; Kehili, S.; Ali, M.; Musa, H.; Ali, U.; Kutty, S.R.M.; Jagaba, A.H.; Abdullahi, S.S.; Tag-Eldin, E.M.; Mahmud, H.N.M.E. Polymer-Based Nano-Adsorbent for the Removal of Lead Ions: Kinetics Studies and Optimization by Response Surface Methodology. Separations 2022, 9, 356. [Google Scholar] [CrossRef]
- Yaro, N.S.A.; Napiah, M.; Sutanto, M.H.; Usman, A.; Jagaba, A.H.; Umar, A.M.; Ahmad, A. Geopolymer utilization in the pavement industry-An overview. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 6th International Conference on Civil and Environmental Engineering for Sustainability (IConCEES 2021), Online, 15–16 November 2021; IOP Publishing: Bristol, UK, 2022; p. 012025. [Google Scholar]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Birniwa, A.H.; Affam, A.C.; Lawal, I.M.; Kankia, M.U.; Kilaco, A.U. A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. J. Water Process. Eng. 2021, 42, 102178. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abubakar, A.S.; Huq, A.O.; Mahmud, H.N.M.E. Polypyrrole-polyethyleneimine (PPy-PEI) nanocomposite: An effective adsorbent for nickel ion adsorption from aqueous solution. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 58, 206–217. [Google Scholar] [CrossRef]
Sample | Depth (m) | Sample Descript. | N.M.C | Specific Gravity (Gs) | % Passing Sieve Size | Atterberg Limits | Soil Classification | Soil Classification | |||
---|---|---|---|---|---|---|---|---|---|---|---|
2.00 mm | 0.425 mm | 0.075 mm | LL | PI | (USCS) | (AASHTO) | |||||
Site 01 | 0.5 | Brown | 14.5 | 2.51 | 79.01 | 56.30 | 43.75 | 37.50 | 13.76 | A-5 | ML |
Site 02 | 0.5 | Brown | 14.8 | 2.61 | 89.92 | 72.21 | 43.81 | 32.50 | 11.87 | A-4 | CL |
Site 03 | 0.5 | Dark | 15.4 | 2.57 | 99.49 | 82.77 | 56.56 | 35.50 | 13.02 | A-6 | CL |
Test No. | Cell Pressure (kN/m2) | Deviator Stress (kN/m2) | Major Principal Stress (kN/m2) | Cohesion C (kN/m2) | Angle of Internal Friction φ (°) | Unit Weight of Soil γ (kN/m3) |
---|---|---|---|---|---|---|
(a) | ||||||
1 | 100 | 125 | 225 | 28 | 13 | 18.86 |
2 | 200 | 180 | 380 | |||
3 | 300 | 240 | 540 | |||
(b) | ||||||
1 | 100 | 98 | 198 | 29 | 8 | 18.55 |
2 | 200 | 130 | 330 | |||
3 | 300 | 160 | 460 | |||
(c) | ||||||
1 | 100 | 106 | 206 | 37 | 6 | 18.34 |
2 | 200 | 130 | 330 | |||
3 | 300 | 160 | 460 |
Sample | Depth (m) | Bulk Unit wgt (kN/m3) | Modulus of Elasticity E (kN/m2) | Shear Strength Parameters | Bearing Capacity (kN/m2) Settlement | |||
---|---|---|---|---|---|---|---|---|
C (kN/m2) | Φ | qult. | qallow | (mm) | ||||
Site 01 | 0.5 | 18.86 | 3714 | 28 | 13 | 421.53 | 105.38 | 28.0 |
Site 02 | 0.5 | 18.55 | 5107 | 29 | 8 | 310.24 | 77.56 | 39.0 |
Site 03 | 0.5 | 18.34 | 7428 | 37 | 6 | 360.25 | 90.06 | 29.0 |
Site | Depth of Foundation (m) | Undrained Cohesion C (kN/m2) | Angle of Internal Friction φ (°) | Unit Weight of Soil γ (kN/m3) | Poisson’s Ratio of Soil µ | Modulus of Elastic of Soil E (kN/m2) |
---|---|---|---|---|---|---|
A | 0.5 | 28 | 13 | 18.86 | 0.3 | 3714 |
B | 0.5 | 29 | 8 | 18.55 | 0.3 | 5107 |
C | 0.5 | 37 | 6 | 18.34 | 0.3 | 7428 |
Site | Ultimate Bearing Capacity (kN/m2) | Allowable Bearing Capacity (kN/m2) | Settlements (mm) |
---|---|---|---|
01 | 365 | 91.25 | 2.5 |
02 | 368 | 92 | 6 |
03 | 360 | 90 | 9 |
Site | Ultimate Bearing Capacity (kN/m2) | Allowable Bearing Capacity (kN/m2) | Settlements (mm) |
---|---|---|---|
01 | 90 | 22.5 | 12.5 |
02 | 98 | 24.5 | 10 |
03 | 87 | 21.75 | 17.5 |
Site | Ultimate Bearing Capacity (kN/m2) | Allowable Bearing Capacity (kN/m2) | Settlements (mm) |
---|---|---|---|
01 | 1100 | 275 | 2.0 |
02 | 1200 | 300 | 0.75 |
03 | 650 | 163 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umaru, I.; Alhaji, M.M.; Alhassan, M.; Adejumo, T.E.; Alkali, B.; Birniwa, A.H.; Jagaba, A.H. Development of Innovative Plate Load Testing Equipment for In-Situ Saturated Clays Soils. Geotechnics 2023, 3, 142-160. https://doi.org/10.3390/geotechnics3020009
Umaru I, Alhaji MM, Alhassan M, Adejumo TE, Alkali B, Birniwa AH, Jagaba AH. Development of Innovative Plate Load Testing Equipment for In-Situ Saturated Clays Soils. Geotechnics. 2023; 3(2):142-160. https://doi.org/10.3390/geotechnics3020009
Chicago/Turabian StyleUmaru, Ibrahim, Mustapha Mohammed Alhaji, Musa Alhassan, Taiye Elisha Adejumo, Babawuya Alkali, Abdullahi Haruna Birniwa, and Ahmad Hussaini Jagaba. 2023. "Development of Innovative Plate Load Testing Equipment for In-Situ Saturated Clays Soils" Geotechnics 3, no. 2: 142-160. https://doi.org/10.3390/geotechnics3020009
APA StyleUmaru, I., Alhaji, M. M., Alhassan, M., Adejumo, T. E., Alkali, B., Birniwa, A. H., & Jagaba, A. H. (2023). Development of Innovative Plate Load Testing Equipment for In-Situ Saturated Clays Soils. Geotechnics, 3(2), 142-160. https://doi.org/10.3390/geotechnics3020009