Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.3. Maximum Entropy Model
2.3.1. Model Customization
2.3.2. Estimating Uncertainty
3. Results and Discussion
3.1. Wildfire Vulnerability Model
3.2. Environmental Factors Influencing Wildfires
3.3. Identifying Areas at Risk of Wildfires
3.4. Impact on Management
4. Conclusions
- (1)
- This study found that geographical factors were the most important environmental components for forest fires, ranked in descending order as follows: altitude, vegetation index, slope, distance from roads, distance from water sources, distance from communities, and slope direction. The areas where forest fires occurred were remote, high above sea level, high in slope, and densely vegetated areas.
- (2)
- The ways in which environmental variables influence forest fires are complicated and changeable. The response curves of forest fires to the seven specified environmental variables were complex and nonlinear. Forest fires are more likely to occur in distant places with dense vegetation since Phrae Province is covered in deciduous forest, providing plenty of fuel.
- (3)
- There is considerable geographical variance in the danger of forest fire across Phrae Province. The lowest-risk locations account for 52.99% of the total area, whereas the highest-risk areas account for 8.91%, which is a low figure. Most of the high-risk sites are spread throughout the Song Long and Rong Kwang District areas. This land is adjacent to forests, and agriculture is extensively practiced along the forest edge. Low-risk regions were found in Nong Muang Khi, where the low-lying riverside areas and few forest areas make forest fires less likely to occur and quick to control. However, the areas where forest fires occur are frequently subject to neglect and a lack of interest in controlling fires lit for agricultural purposes, which then spread to forests.
- (4)
- The MaxEnt model is flexible enough to work in other areas with similar environmental variables. It could also be beneficial for figuring out how likely a wildfire is to happen in nearby areas with similar topography and types of plants.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thongtha, D.; Wiroonsri, N. Normal Approximation for Fire Incident Simulation Using Permanental Cox Processes. Methodol. Comput. Appl. Probab. 2023, 25, 19. [Google Scholar] [CrossRef]
- Junpen, A.; Garivait, S.; Bonnet, S.; Pongpullponsak, A. Fire spread prediction for deciduous forest fires in Northern Thailand. Sci. Asia 2013, 39, 535–545. [Google Scholar] [CrossRef]
- Chernkhunthod, C.; Hioki, Y. Fuel characteristics and fire behavior in mixed deciduous forest areas with different fire frequencies in Doi Suthep-Pui National Park, Northern Thailand. Landsc. Ecol. Eng. 2020, 16, 289–297. [Google Scholar] [CrossRef]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Phairuang, W. Biomass Burning and Their Impacts on Air Quality in Thailand, 1st ed.; CRC Press: Boca Raton, FA, USA, 2021; pp. 21–38. [Google Scholar]
- Suriyawong, P.; Chuetor, S.; Samae, H.; Piriyakarnsakul, S.; Amin, M.; Furuuchi, M.; Hata, M.; Inerb, M.; Phairuang, W. Airborne particulate matter from biomass burning in Thailand. Heliyon 2023, 9, e14261. [Google Scholar] [CrossRef]
- Chansuebsri, S.; Kolar, P.; Kraisitnitikul, P.; Kantarawilawan, N.; Yabueng, N.; Wiriya, W.; Thepnuan, D.; Chantara, S. Air-borne particulate matter from biomass burning in Thailand. Atmos. Environ. 2024, 327, 120517. [Google Scholar] [CrossRef]
- Lam-González, Y.E.; León, C.J.; de León, J.; Suárez-Rojas, C. The Impact of Degradation of Islands’ Land Ecosystems Due to Climate Change on Tourists’ Travel Decisions. Land 2022, 11, 1644. [Google Scholar] [CrossRef]
- Meechai, W.; Khonkaen, P.; Chuesaard, T.; Kruama, K.; Pakketanang, J.; Chamchoi, Y.; Kamyo, K. The Impacts of El Niño and La Niña Phenomena on Land Surface Temperature Changes Due to Different Land Uses in Phrae Province. Thai For. Ecol. Res. J. 2025, 9, 93–110. [Google Scholar] [CrossRef]
- Piyush, J.; Sean, C.P.C.; Sriram, G.S.; Mark, C.; Steve, T.; Mike, D.F. Review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Arunyawat, S.; Shrestha, R.P. Assessing Land Use Change and Its Impact on Ecosystem Services in Northern Thailand. Sustainability 2016, 8, 768. [Google Scholar] [CrossRef]
- Chen, D.; Zeng, A.; He, Y.; Ouyang, Y.; Li, C.; Tigabu, M.; Wang, W.; Ni, R.; Zhang, J.; Guo, F. Study on Small-Scale Forest Fire Risk Zoning Based on Random Forest and the Fuzzy Analytic Network Process. Forests 2025, 16, 97. [Google Scholar] [CrossRef]
- Yfantidou, A.; Zoka, M.; Stathopoulos, N.; Kokkalidou, M.; Girtsou, S.; Tsoutsos, M.-C.; Hadjimitsis, D.; Kontoes, C. Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach. Appl. Sci. 2023, 13, 10261. [Google Scholar] [CrossRef]
- Pragya; Kumar, M.; Tiwari, A.; Majid, S.I.; Bhadwal, S.; Sahu, N.; Verma, N.K.; Tripathi, D.K.; Avtar, R. Integrated Spatial Analysis of Forest Fire Susceptibility in the Indian Western Himalayas (IWH) Using Remote Sensing and GIS-Based Fuzzy AHP Approach. Remote Sens. 2023, 15, 4701. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, B.; Luo, J.; Liu, H.; Deng, Q.; Wang, L.; Zuo, Z. Forest Fire Driving Factors and Fire Risk Zoning Based on an Optimal Parameter Logistic Regression Model: A Case Study of the Liangshan Yi Autonomous Prefecture, China. Fire 2023, 6, 336. [Google Scholar] [CrossRef]
- Cui, L.; Berger, U.; Cao, M.; Zhang, Y.; He, J.; Pan, L.; Jiang, J. Conservation and Restoration of Mangroves in Response to Invasion of Spartina alterniflora Based on the MaxEnt Model: A Case Study in China. Forests 2023, 14, 1220. [Google Scholar] [CrossRef]
- Barreto, J.S.; Armenteras, D. Open Data and Machine Learning to Model the Occurrence of Fire in the Ecoregion of “Llanos Colombo–Venezolanos”. Remote Sens. 2020, 12, 3921. [Google Scholar] [CrossRef]
- Yang, X.; Jin, X.; Zhou, Y. Wildfire Risk Assessment and Zoning by Integrating Maxent and GIS in Hunan Province, China. Forests 2021, 12, 1299. [Google Scholar] [CrossRef]
- Lorenț, A.; Petrila, M.; Apostol, B.; Capalb, F.; Chivulescu, Ș.; Șamșodan, C.; Marcu, C.; Badea, O. Assessing and Mapping Forest Fire Vulnerability in Romania Using Maximum Entropy and eXtreme Gradient Boosting. Forests 2025, 16, 1156. [Google Scholar] [CrossRef]
- Tan, C.; Feng, Z. Mapping Forest Fire Risk Zones Using Machine Learning Algorithms in Hunan Province, China. Sustainability 2023, 15, 6292. [Google Scholar] [CrossRef]
- Choi, J.; Chae, H. Assessing Wildfire Risk in South Korea Under Climate Change Using the Maximum Entropy Model and Shared Socioeconomic Pathway Scenarios. Atmosphere 2025, 16, 5. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, C.; Wang, G.; Zhao, F.; Tian, Y.; Li, H. Integrating Multi-Source Remote Sensing Data for Forest Fire Risk Assessment. Forests 2024, 15, 2028. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Martino, S.; Thonicke, K.; Gómez-Giménez, M.; San-Miguel, J.; Oom, D.; Velea, R.; Mouillot, F.; Molina, J.R.; et al. Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn. Fire 2023, 6, 215. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, X.; Zhang, Y.; Li, H.; Zhang, L.; Liu, Y.; Li, J.; Zhang, J.; Li, X.; Zhang, S.; et al. Development of an Index for Forest Fire Risk Assessment in Southwest China. Remote Sens. 2023, 15, 5077. [Google Scholar] [CrossRef]
- Inlaung, K.; Chotamonsak, C.; Macatangay, R.; Surapipith, V. Assessment of Transboundary PM2.5 from Biomass Burning in Northern Thailand. Toxics 2024, 12, 462. [Google Scholar] [CrossRef]
- Phrae Province. Available online: https://phrae.moc.go.th/th/content/page/index/id/1055 (accessed on 25 July 2025).
- Phrae Province. In Wikipedia. 2025. Available online: https://en.wikipedia.org/wiki/Phrae_province (accessed on 25 July 2025).
- Climate and Average Weather Year Round in Phrae. Available online: https://weatherspark.com/y/113585/Average-Weather-in-Phrae-Thailand-Year-Round (accessed on 27 July 2025).
- Thai Meteorological Department. Available online: https://www.tmd.go.th/en/ (accessed on 27 July 2025).
- Hotspot Data. Available online: https://wildfire.forest.go.th/# (accessed on 27 July 2025).
- Digital Elevation Model (DEM) Data from the National Aeronautics and Space Administration (NASA). Available online: https://asf.alaska.edu (accessed on 27 July 2025).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. Maxent Software for Modeling Species Niches and Distributions (Version 3.4.4). Available online: http://biodiversityinformatics.amnh.org/open_source/maxent/ (accessed on 26 July 2025).
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The Crucial Role of the Accessible Area in Ecological Niche Modeling and Species Distribution Modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Soberon, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef]
- Anderson, M.J. Analysis of Ecological Communities. J. Exp. Mar. Biol. Ecol. 2003, 289, 303–305. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A review of methods for assessment of prediction errors in conservation presence/absence models. Envir Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Saha, S.; Bera, B.; Shit, P.K.; Bhattacharjee, S.; Sengupta, N. Prediction of forest fire susceptibility applying machine and deep learning algorithms for conservation priorities of forest resources. Remote Sens. Appl. Soc. Environ. 2013, 49, 23–31. [Google Scholar] [CrossRef]
- Paudel, G.; Pandey, K.; Lamsal, P.; Bhattarai, A.; Bhattarai, A.; Tripathi, S. Geospatial forest fire risk assessment and zoning by integrating MaxEnt in Gorkha District, Nepal. Heliyon 2024, 12, 1299. [Google Scholar] [CrossRef]
- Kamyo, T.; Asanok, L. Modeling habitat suitability of Dipterocarpus alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. For. Sci. Technol. 2020, 10, 99–105. [Google Scholar] [CrossRef]
- Uthappa, A.R.; Das, B.; Raizada, A.; Kumar, P.; Jha, P.; Prasad, P.V.V. Forest fire susceptibility mapping using multi-criteria decision making and machine learning models in the Western Ghats of India. J. Environ. Manag. 2025, 379, 124777. [Google Scholar] [CrossRef]
- Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.; Gracia, M.; Vayreda, J.; Retana, J. Patterns of fuel types and crown fire potential in Pinus halepensis forests in the Western Mediterranean Basin. For. Ecol. Manag. 2012, 270, 282–290. [Google Scholar] [CrossRef]
- Romano, N.; Ursino, N. Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire 2020, 3, 49. [Google Scholar] [CrossRef]
- Coppoletta, M.; Knapp, E.E.; Collins, B.M.; Abbott, C.S.; Fertel, H.M.; Stephens, S.L. Fire history in northern Sierra Nevada mixed conifer forests across a distinct gradient in productivity. For. Ecol. 2024, 20, 86. [Google Scholar] [CrossRef]
- Prasad, V.K.; Badarinath, K.V.S.; Eaturu, A. Biophysical and anthropogenic controls of forest fires in the Deccan Plateau, India. J. Environ. Manag. 2008, 86, 1–13. [Google Scholar] [CrossRef]
- Çolak, E.; Sunar, F. Evaluation of forest fire risk in the Mediterranean Turkish forests: A case study of Menderes region, Izmir. Int. J. Disaster Risk Reduct. 2020, 45, 101479. [Google Scholar] [CrossRef]
- Pinheiro, C.d.A.; Martins, B.; Nunes, A.; Bento-Gonçalves, A.; Laranjeira, M. Driving Factors of Post-Fire Vegetation Regrowth in Mediterranean Forest. Land 2025, 14, 448. [Google Scholar] [CrossRef]
- Kamyo, T.; Marod, D.; Pattanakiat, S.; Suksawang, S.; Panuthai, S. Land cover changes in tropical seasonal forests at Mae Klong head watershed, Kanchanaburi province, Thailand. Maejo Int. J. Sci. Technol. 2016, 10, 304–312. Available online: https://mijst.mju.ac.th/vol10/304-312.pdf (accessed on 25 April 2024).
- Hijmans, R.J.; Graham, C.H. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob. Change Biol. 2006, 12, 2272–2281. [Google Scholar] [CrossRef]
- Deardorff, T.L.; Palmquist, K.; Shaller, P.J.; Shrestha, P.L. Western Wildfires and the Mississippi Delta: Lessons Learned about Ecosystem Management from Attempts to Control Mother Nature. In Proceedings of the World Environmental and Water Resources Congress 2016, West Palm Beach, FA, USA, 22–26 May 2016. [Google Scholar] [CrossRef]
- Kabeshita, L.; Sloat, L.L.; Fischer, E.V.; Kampf, S.; Magzamen, S.; Schultz, C.; Wilkins, M.J.; Kinnebrew, E.; Mueller, N.D. Pathways framework identifies wildfire impacts on agriculture. Nat. Food. 2023, 4, 664–672. [Google Scholar] [CrossRef] [PubMed]
Code | Variables | Percent Contribution | Permutation Importance |
---|---|---|---|
pDEM | Mean sea level elevation | 80.2 | 78.5 |
pNDVI | Vegetation index | 13.0 | 12.0 |
pRoad | Distance from road | 3.3 | 3.2 |
pWater | Distance from water source | 1.2 | 1.9 |
pLocation | Distance from urban | 0.9 | 1.9 |
pAspect | Aspect | 0.8 | 1.0 |
pSlope | Slope | 0.7 | 1.5 |
Risk Level | Area (ha) | Percentage of Total Area |
---|---|---|
Very low risk | 341,395.54 | 52.99 |
Low risk | 88,132.64 | 13.68 |
Medium risk | 76,162.41 | 11.82 |
High risk | 81,157.55 | 12.60 |
Very high risk | 57,384.10 | 8.91 |
Total area | 644,232.24 | 100.00 |
Risk Level | Den Chai | Mueang Phrae | Rong Kwang | Long | Wang Chin | Song | Sung Men | Nong Muang Khai |
---|---|---|---|---|---|---|---|---|
Very low risk | 23,390.26 | 59,033.74 | 37,655.86 | 64,476.01 | 66,593.11 | 59,098.11 | 21,861.96 | 9286.48 |
Low risk | 10,117.41 | 8076.82 | 11,807.18 | 17,599.91 | 10,803.63 | 24,158.76 | 4339.73 | 1229.19 |
Medium risk | 8168.84 | 3942.03 | 11,218.35 | 15,971.24 | 8583.93 | 22,636.41 | 4612.84 | 1028.78 |
High risk | 7970.72 | 4815.62 | 14,395.64 | 16,063.35 | 7422.96 | 25,117.56 | 4275.22 | 1096.49 |
Very high risk | 4335.62 | 3278.89 | 10,992.62 | 12,582.15 | 4061.89 | 19,234.75 | 2023.27 | 874.89 |
Total | 53,982.85 | 79,147.10 | 86,069.67 | 126,692.67 | 97,465.52 | 150,245.59 | 37,113.02 | 13,515.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamyo, T.; Kamyo, P.; Panthong, K.; Howpinjai, I.; Kamton, R.; Asanok, L. Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model. Geographies 2025, 5, 51. https://doi.org/10.3390/geographies5030051
Kamyo T, Kamyo P, Panthong K, Howpinjai I, Kamton R, Asanok L. Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model. Geographies. 2025; 5(3):51. https://doi.org/10.3390/geographies5030051
Chicago/Turabian StyleKamyo, Torlarp, Punchaporn Kamyo, Kanyakorn Panthong, Itsaree Howpinjai, Ratchaneewan Kamton, and Lamthai Asanok. 2025. "Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model" Geographies 5, no. 3: 51. https://doi.org/10.3390/geographies5030051
APA StyleKamyo, T., Kamyo, P., Panthong, K., Howpinjai, I., Kamton, R., & Asanok, L. (2025). Assessing Fire Risk Zones in Phrae Province, Northern Thailand, Using a MaxEnt Model. Geographies, 5(3), 51. https://doi.org/10.3390/geographies5030051