Estimating Riparian Water Movement in an Incipient Karst Landscape—Minnesota, USA
Abstract
:1. Introduction
2. Study Area and Hydrologic Processes
3. Materials and Methods
3.1. Data Collection
3.2. Measurement of Stable Isotopes of Hydrogen and Oxygen
4. Results
4.1. Riparian Hydrologic Pathways Identification Using Isotopic Shifts for Crystal Creek
4.2. Riparian Hydrologic Pathways for Bridge Creek and Trout Brook
4.3. Spring Aquifers Transit Time
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global Distribution of Carbonate Rocks and Karst Water Resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef]
- Li, Y.; Shu, L.; Wu, P.; Zou, Z.; Lu, C.; Liu, B.; Niu, S.; Yin, X. Influence of the Karst Matrix Hydraulic Conductivity and Specific Yield on the Estimation Accuracy of Karstic Water Storage Variation. J. Hydrol. 2023, 626, 130186. [Google Scholar] [CrossRef]
- White, W.B. Cave—Karst, Terrain, Distribution|Britannica. Available online: https://www.britannica.com/science/cave/Geographic-distribution-of-karst-terrain (accessed on 4 October 2023).
- Beynen, P.E. Karst Management; Springer: Dordrecht, The Netherlands, 2011; ISBN 978-94-007-1207-2. [Google Scholar]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the Hydrological Behavior of a Complex Karst System Using Stable Isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Aliouache, M.; Wang, X.; Jourde, H.; Huang, Z.; Yao, J. Incipient Karst Formation in Carbonate Rocks: Influence of Fracture Network Topology. J. Hydrol. 2019, 575, 824–837. [Google Scholar] [CrossRef]
- Bakalowicz, M. Chapter 45—Epikarst. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 394–398. ISBN 978-0-12-814124-3. [Google Scholar]
- Runkel, A.C.; Tipping, R.G.; Meyer, J.R.; Steenberg, J.R.; Retzler, A.J.; Parker, B.L.; Green, J.A.; Barry, J.D.; Jones, P.M. A Multidisciplinary-Based Conceptual Model of a Fractured Sedimentary Bedrock Aquitard: Improved Prediction of Aquitard Integrity. Hydrogeol. J. 2018, 26, 2133–2159. [Google Scholar] [CrossRef]
- Brooks, K.N.; Ffolliott, P.F.; Magner, J.A. Hydrology and the Management of Watersheds, 4th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; ISBN 978-1-118-45974-4. [Google Scholar]
- Hu, K.; Chen, H.; Nie, Y.; Wang, K. Seasonal Recharge and Mean Residence Times of Soil and Epikarst Water in a Small Karst Catchment of Southwest China. Sci. Rep. 2015, 5, 10215. [Google Scholar] [CrossRef] [PubMed]
- Lusardi, B.A.; Dengler, E.L. Minnesota at a Glance: Quaternary Glacial Geology. 2017. Available online: https://conservancy.umn.edu/handle/11299/59427 (accessed on 19 December 2023).
- Runkel, A.C.; Steenberg, J.R.; Tipping, R.G.; Retzler, A.J. Geologic controls on groundwater and surface water flow in southeastern Minnesota and its impact on nitrate concentrations in streams. Minn. Geol. Surv. Open File Rep. 2014, 14, 70. [Google Scholar]
- Barry, J.D.; Runkel, A.C.; Alexander, E.C., Jr. Synthesizing multifaceted characterization techniques to refine a conceptual model of groundwater sources to springs in valley settings (Minnesota, USA). Hydrogeol. J. 2023, 31, 707–729. [Google Scholar] [CrossRef]
- Barry, J.; Larsen, M.R.; Tipping, R.G.; Alexander, S.C.; Alexander, E.C., Jr. Bear Spring Olmsted County, Minnesota; University Digital Conservancy: Minneapolis, MN, USA, 2018. [Google Scholar]
- Seltzer, C. Mineralogical Characterization of Subsurface Carbonate Rocks Located in Southeastern Minnesota. 2023. Available online: https://hdl.handle.net/11299/256252 (accessed on 19 December 2023).
- Guo, X.; Chen, Q.; Huang, H.; Wang, Z.; Li, J.; Huang, K.; Zhou, H. Water Source Identification and Circulation Characteristics of Intermittent Karst Spring Based on Hydrochemistry and Stable Isotope—An Example from Southern China. Appl. Geochem. 2022, 141, 105309. [Google Scholar] [CrossRef]
- Wang, F.; Chen, H.; Lian, J.; Fu, Z.; Nie, Y. Seasonal Recharge of Spring and Stream Waters in a Karst Catchment Revealed by Isotopic and Hydrochemical Analyses. J. Hydrol. 2020, 591, 125595. [Google Scholar] [CrossRef]
- Setiawan, T.; Syah Alam, B.Y.C.S.S.; Haryono, E. Hendarmawan Hydrochemical and Environmental Isotopes Analysis for Characterizing a Complex Karst Hydrogeological System of Watuputih Area, Rembang, Central Java, Indonesia. Hydrogeol. J. 2020, 28, 1635–1659. [Google Scholar] [CrossRef]
- USGS. Groundwater Age. 2019. Available online: https://www.usgs.gov/mission-areas/water-resources/science/groundwater-age#publications (accessed on 19 December 2023).
- Hewlett, J.; Hibbert, A.R. Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas. In International Symposium on Forest Hydrology; Pergamon Press: New York, NY, USA, 1967. [Google Scholar]
- McDonnell, J.; Hewlett, J.D.; Hibbert, A.R. 1967: Factors Affecting the Response of Small Watersheds to Precipitation in Humid Areas. In Sopper, W.E. and Lull, H.W., Editors, Forest Hydrology. Prog. Phys. Geogr. 2009, 33, 288–293. [Google Scholar] [CrossRef]
- Rai, S.; Srinivas, R.; Magner, J. Using Fuzzy Logic-Based Hybrid Modeling to Guide Riparian Best Management Practices Selection in Tributaries of the Minnesota River Basin. J. Hydrol. 2022, 608, 127628. [Google Scholar] [CrossRef]
- NOAA. National Oceanic and Atmospheric Administration. Available online: https://www.noaa.gov/climate (accessed on 5 October 2023).
- MSCO. High Density Radius Retrieval 071210. Available online: https://climateapps.dnr.state.mn.us/hidradius/radius_new.asp (accessed on 5 October 2023).
- Ritter, D.F.; Kochel, R.C.; Miller, J.R. Process Geomorphology, 5th ed.; Waveland Press Inc.: Long Grove, IL, USA, 2011; ISBN 978-1-57766-669-1. [Google Scholar]
- Jurgens, B.C.; Böhlke, J.K.; Haase, K.; Busenberg, E.; Hunt, A.G.; Hansen, J.A. DGMETA (Version 1)—Dissolved Gas Modeling and Environmental Tracer Analysis Computer Program; U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Pencak, E.S.; Alexander, S.C.; Alexander, E.C. From Spring to Stream: Water Quality Analysis in Trout Brook, Dakota County, MN. 2018. Available online: https://conservancy.umn.edu/handle/11299/196199 (accessed on 19 December 2023).
- Zhang, L.; Magner, J.; Strock, J. Exploring a Climate Gradient of Midwestern USA Agricultural Landscape Runoff Using Deuterium (δD) and Oxygen-18 (δ18O). Water 2022, 14, 1629. [Google Scholar] [CrossRef]
- DNR. Weekly Snow Depth and Rank Maps. Available online: https://www.dnr.state.mn.us/climate/snowmap/index.html (accessed on 5 October 2023).
- Nieber, J.L. Setting Realistic Nitrate BMP Goals in Southeast Minnesota. 2022. Available online: https://experts.umn.edu/en/projects/setting-realistic-nitrate-bmp-goals-in-southeast-minnesota/fingerprints/ (accessed on 19 December 2023).
- Kuehner, K.J.; Green, J.A.; Barry, J.D.; Rutelonis, J.W.; Wheeler, B.J.; Kasahara, S.M.; Luhmann, A.J.; Alexander, E.C., Jr. Crystal Creek Dye Trace Report Fillmore County, Minnesota. Retrieved from the University of Minnesota Digital Conservancy. 2017. Available online: https://conservancy.umn.edu/handle/11299/188258 (accessed on 19 December 2023).
- Kuehner, K.J.; Green, J.A.; Wheeler, B.J.; Kashahara, S.P.; Luhmann, A.J.; Alexander, E.C., Jr. Water Tracing in the Crystal Creek Watershed in Minnesota. In Proceedings of the Geological Society of America Annual Meeting, Denver, CO, USA, 25–28 September 2016; Available online: https://gsa.confex.com/gsa/2016AM/webprogram/Paper283033.html (accessed on 19 December 2023).
- Barry, J.D.; Green, J.A. Report on the 2012–2013 traces conducted on Bridge Creek; MDNR: Lansing, MI, USA, 2014; Available online: https://files.dnr.state.mn.us/waters/groundwater_section/mapping/dyetrace/Houston_2013-2014_BridgeCreek_01Aug2016.pdf (accessed on 19 December 2023).
- Runkel, A.C.; Tipping, R.R.; Green, J.A.; Jones, P.M.; Meyer, J.R.; Parker, B.L.; Steenberg, J.R.; Retzler, A.J. OFR14-04, Hydrogeologic Properties of the St. Lawrence Aquitard, Southeastern Minnesota; Retrieved from the University of Minnesota Digital Conservancy; Minnesota Geological Survey: St Paul, MN, USA, 2014; Available online: https://hdl.handle.net/11299/165299 (accessed on 19 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aggarwal, S.; Kuehner, K.J.; Magner, J. Estimating Riparian Water Movement in an Incipient Karst Landscape—Minnesota, USA. Geographies 2024, 4, 83-94. https://doi.org/10.3390/geographies4010006
Aggarwal S, Kuehner KJ, Magner J. Estimating Riparian Water Movement in an Incipient Karst Landscape—Minnesota, USA. Geographies. 2024; 4(1):83-94. https://doi.org/10.3390/geographies4010006
Chicago/Turabian StyleAggarwal, Shubham, Kevin J. Kuehner, and Joe Magner. 2024. "Estimating Riparian Water Movement in an Incipient Karst Landscape—Minnesota, USA" Geographies 4, no. 1: 83-94. https://doi.org/10.3390/geographies4010006
APA StyleAggarwal, S., Kuehner, K. J., & Magner, J. (2024). Estimating Riparian Water Movement in an Incipient Karst Landscape—Minnesota, USA. Geographies, 4(1), 83-94. https://doi.org/10.3390/geographies4010006