Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy
Abstract
:1. Introduction
2. Triboelectric Nanogenerator Networks for Blue Energy
2.1. Working Principle of Triboelectric Nanogenerators
2.2. General Network Architecture
2.3. Typical Triboelectric Nanogenerator Units
3. Mechanical Connection
3.1. Simple Aggregation with Weak Coupling
3.2. Strongly Coupled Networks
3.3. Dynamic Self-Assembly Networks
3.4. Chiral Networks
3.5. Three-Dimensional Networks
4. Electrical Connection
4.1. Rectification and Power Management
4.2. Networking Topology and Cable Loss
4.3. Multifunctional Design
5. Anchoring Strategy
5.1. Directly Anchoring to the Seabed
5.2. Attaching to Another Large Structure
5.3. Anchoring as a Part of a Network
6. Summary and Outlook
- Designing units with higher power density is an essential approach to enhance the overall output of the network. In addition to advanced strategies, such as charge pumping [50], and optimizing the dielectric materials and structures of the units, the cooperative effect from networking should also be systematically investigated.
- The interaction between water and units or networks significantly affects the energy utilization efficiency. Therefore, a comprehensive theoretical understanding based on fluid-structure interaction dynamics should be developed. Theoretical calculations should guide the design of units and networks.
- The materials, connecting mechanisms, and topology of mechanical connections should be further optimized. The mechanical behavior from adjacent connected units to networks needs to be analyzed in detail. To better realize the relevant functions, such as maintaining the integrity of the network, improving the performance of single units, and enhancing the system efficiency of the network, new concepts and strategies need to be developed.
- Designing high-efficiency electrical connection strategies that can transmit and merge the harvested power from distributed units is crucial, especially for large-scale networks that have relatively long cables. The connection should be cost-effective and minimize the influence from sea water. Meanwhile, the output also needs to be tuned using a power management circuit and distributed to different application devices that need to be studied in detail.
- The mechanical and electrical connections in the network will undergo repeated deformation, which can suffer from fatigue issues. The durability of the connection structures must be well considered and improved in terms of materials and connecting mechanisms.
- Given the complexity of real marine environments, corrosion and biofouling can be non-negligible problems for the connection structures in practical applications, which can be solved through adopting advanced materials and functional coatings.
- The environmental friendliness of the network should also be emphasized. Minimizing the interference to the environment should be an important consideration in the design stage of the network.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Callaway, E. Energy: To Catch a Wave. Nature 2007, 450, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Scruggs, J.; Jacob, P. Harvesting Ocean Wave Energy. Science 2009, 323, 1176–1178. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.D.; Schmitt, W.R. Ocean Energy: Forms and Prospects. Science 1980, 207, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.; Majumdar, A. Opportunities and Challenges for a Sustainable Energy Future. Nature 2012, 488, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Khaligh, A.; Onar, O.C. Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems; CRC Press: Boca Raton, FL, USA, 2007; Volume 89. [Google Scholar]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the Blue Energy Dream by Triboelectric Nanogenerator Networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Falcao, A.F.D. Wave Energy Utilization: A Review of the Technologies. Renew. Sust. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible Triboelectric Generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerators as New Energy Technology and Self-Powered Sensors–Principles, Problems and Perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Wang, Z.L.; Chen, J.; Lin, L. Progress in Triboelectric Nanogenerators as a New Energy Technology and Self-Powered Sensors. Energy Environ. Sci. 2015, 8, 2250–2282. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s Displacement Current for Energy and Sensors: The Origin of Nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Zi, Y.; Niu, S.; Wang, J.; Wen, Z.; Tang, W.; Wang, Z.L. Standards and Figure-of-Merits for Quantifying the Performance of Triboelectric Nanogenerators. Nat. Commun. 2015, 6, 8376. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Yi, F.; Zi, Y.; Lin, J.; Wang, X.; Xu, Y.; Wang, Z.L. Sustainably Powering Wearable Electronics Solely by Biomechanical Energy. Nat. Commun. 2016, 7, 12744. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B.-S.; Park, Y.; Choong, C.; Kim, J.-B.; Wang, Z.L.; Kim, H.-Y.; et al. Flutter-Driven Triboelectrification for Harvesting Wind Energy. Nat. Commun. 2014, 5, 4929. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Catch Wave Power in Floating Nets. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Panda, S.; Hajra, S.; Oh, Y.; Oh, W.; Lee, J.; Shin, H.; Vivekananthan, V.; Yang, Y.; Mishra, Y.K.; Kim, H.J. Hybrid Nanogenerators for Ocean Energy Harvesting: Mechanisms, Designs, and Applications. Small 2023, 19, 2300847. [Google Scholar] [CrossRef]
- Lin, L.; Xie, Y.; Niu, S.; Wang, S.; Yang, P.-K.; Wang, Z.L. Robust Triboelectric Nanogenerator Based on Rolling Electrification and Electrostatic Induction at an Instantaneous Energy Conversion Efficiency of ∼55%. ACS Nano 2015, 9, 922–930. [Google Scholar] [CrossRef]
- Niu, S.; Wang, S.; Lin, L.; Liu, Y.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical Study of Contact-Mode Triboelectric Nanogenerators as an Effective Power Source. Energy Environ. Sci. 2013, 6, 3576–3583. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, S.; Lin, L.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theory of Sliding-Mode Triboelectric Nanogenerators. Adv. Mater. 2013, 25, 6184–6193. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Wang, S.; Lin, L.; Zhou, Y.S.; Hu, Y.; Wang, Z.L. Theoretical Investigation and Structural Optimization of Single-Electrode Triboelectric Nanogenerators. Adv. Funct. Mater. 2014, 24, 3332–3340. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Chen, X.; Wang, S.; Zhou, Y.S.; Lin, L.; Xie, Y.; Wang, Z.L. Theory of Freestanding Triboelectric-Layer-Based Nanogenerators. Nano Energy 2015, 12, 760–774. [Google Scholar] [CrossRef]
- Wang, X.; Niu, S.; Yin, Y.; Yi, F.; You, Z.; Wang, Z.L. Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy. Adv. Energy Mater. 2015, 5, 1501467. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, T.; Lin, P.; Shao, J.J.; He, C.; Zhong, W.; Chen, X.Y.; Wang, Z.L. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano 2018, 12, 1849–1858. [Google Scholar] [CrossRef]
- Yang, X.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J.; Chen, J.; Wang, Z.L. Macroscopic Self-Assembly Network of Encapsulated High-Performance Triboelectric Nanogenerators for Water Wave Energy Harvesting. Nano Energy 2019, 60, 404–412. [Google Scholar] [CrossRef]
- Xu, L.; Pang, Y.; Zhang, C.; Jiang, T.; Chen, X.; Luo, J.; Tang, W.; Cao, X.; Wang, Z.L. Integrated Triboelectric Nanogenerator Array Based on Air-Driven Membrane Structures for Water Wave Energy Harvesting. Nano Energy 2017, 31, 351–358. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.; Zhong, W.; Wang, Z.L. High-Performance Triboelectric Nanogenerators for Self-Powered, in-Situ and Real-Time Water Quality Mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Guo, H.; Wu, Z.; Zou, H.; Yang, J.; Wang, Z.L. Super-Robust and Frequency-Multiplied Triboelectric Nanogenerator for Efficient Harvesting Water and Wind Energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Zhang, C.; He, L.; Zhou, L.; Yang, O.; Yuan, W.; Wei, X.; Liu, Y.; Lu, L.; Wang, J.; Wang, Z.L. Active Resonance Triboelectric Nanogenerator for Harvesting Omnidirectional Water-Wave Energy. Joule 2021, 5, 1613–1623. [Google Scholar] [CrossRef]
- Zhu, G.; Su, Y.; Bai, P.; Chen, J.; Jing, Q.; Yang, W.; Wang, Z.L. Harvesting Water Wave Energy by Asymmetric Screening of Electrostatic Charges on a Nanostructured Hydrophobic Thin-Film Surface. ACS Nano 2014, 8, 6031–6037. [Google Scholar] [CrossRef]
- Qin, H.; Xu, L.; Lin, S.; Zhan, F.; Dong, K.; Han, K.; Wang, H.; Feng, Y.; Wang, Z.L. Underwater Energy Harvesting and Sensing by Sweeping Out the Charges in an Electric Double Layer Using an Oil Droplet. Adv. Funct. Mater. 2022, 32, 2111662. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Li, Z.; Fan, X.; Zi, Y.; Jing, Q.; Guo, H.; Wen, Z.; Pradel, K.C.; Niu, S.; et al. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano 2015, 9, 3324–3331. [Google Scholar] [CrossRef]
- Zhang, S.L.; Xu, M.; Zhang, C.; Wang, Y.-C.; Zou, H.; He, X.; Wang, Z.; Wang, Z.L. Rationally Designed Sea Snake Structure Based Triboelectric Nanogenerators for Effectively and Efficiently Harvesting Ocean Wave Energy with Minimized Water Screening Effect. Nano Energy 2018, 48, 421–429. [Google Scholar] [CrossRef]
- Hu, Y.; Qiu, H.; Sun, Q.; Wang, Z.L.; Xu, L. Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting. Small Methods 2023, 7, 2300582. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xu, L.; Bai, Y.; Wang, Z.L. Pumping up the Charge Density of a Triboelectric Nanogenerator by Charge-Shuttling. Nat. Commun. 2020, 11, 4203. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Wang, H.; Xu, L.; Zheng, M.; Wang, Z.L. Brownian Motor Inspired Monodirectional Continuous Spinning Triboelectric Nanogenerators for Extracting Energy from Irregular Gentle Water Waves. Energy Environ. Sci. 2023, 16, 473–483. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Lin, P.; Yang, X.; Wang, H.; Qin, H.; Wang, Z.L. Three-Dimensional Chiral Networks of Triboelectric Nanogenerators Inspired by Metamaterial’s Structure. Energy Environ. Sci. 2023, 16, 3040–3052. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Li, W.; Jiang, T.; Zhang, L.; Guo, T.; Liu, G.; Zhang, C.; Wang, Z.L. Universal Power Management Strategy for Triboelectric Nanogenerator. Nano Energy 2017, 37, 168–176. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Liu, G.; Yang, H.; Bu, T.; Fu, X.; Xu, S.; Fang, C.; Zhang, C. Network Topology Optimization of Triboelectric Nanogenerators for Effectively Harvesting Ocean Wave Energy. iScience 2020, 23, 101848. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, L.; Chen, C.; Liu, W.; Pu, X.; Wu, Z.; Hu, C.; Wang, Z.L. Power Cables for Triboelectric Nanogenerator Networks for Large-Scale Blue Energy Harvesting. Nano Energy 2020, 75, 104975. [Google Scholar] [CrossRef]
- Polinder, H.; Damen, M.E.C.; Gardner, F. Design, Modelling and Test Results of the AWS PM Linear Generator. Eur. Trans. Electr. Power 2005, 15, 245–256. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, T.; Wang, C.; Zhang, S.L.; Li, Z.; Pan, X.; Wang, Z.L. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 1932–1939. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zheng, F.; Wei, X.; Shi, Y.; Li, R.; Wang, B.; Wang, L.; Wu, Z.; Wang, Z.L. Pendular-Translational Hybrid Nanogenerator Harvesting Water Wave Energy. ACS Appl. Mater. Interfaces 2022, 14, 15187–15194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, H.; Wang, J.; Gao, Q.; Yu, Y.; Wen, J.; Wang, Z.L.; Cheng, T. A Drawstring Triboelectric Nanogenerator with Modular Electrodes for Harvesting Wave Energy. Nano Res. 2023, 16, 10931–10937. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Liu, G.; Wang, S.; Li, W.; Zhang, C.; Wang, Z.L. Self-Powered Intelligent Buoy System by Water Wave Energy for Sustainable and Autonomous Wireless Sensing and Data Transmission. Nano Energy 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Wen, Z.; Guo, H.; Zi, Y.; Yeh, M.-H.; Wang, X.; Deng, J.; Wang, J.; Li, S.; Hu, C.; Zhu, L.; et al. Harvesting Broad Frequency Band Blue Energy by a Triboelectric–Electromagnetic Hybrid Nanogenerator. ACS Nano 2016, 10, 6526–6534. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Li, Z.; Liao, X.; Qiao, L.; Li, Y.; Dong, S.; Zhang, Z.; Zhang, B. A Heaving Point Absorber-Based Ocean Wave Energy Convertor Hybridizing a Multilayered Soft-Brush Cylindrical Triboelectric Generator and an Electromagnetic Generator. Nano Energy 2021, 89, 106381. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Wang, Y.; Wang, H.; Wang, H.; Zhang, S.L.; Zhao, T.; Xu, M.; Wang, Z.L. Flexible Seaweed-Like Triboelectric Nanogenerator as a Wave Energy Harvester Powering Marine Internet of Things. ACS Nano 2021, 15, 15700–15709. [Google Scholar] [CrossRef]
- Deng, Z.; Xu, L.; Qin, H.; Li, X.; Duan, J.; Hou, B.; Wang, Z.L. Rationally Structured Triboelectric Nanogenerator Arrays for Harvesting Water-Current Energy and Self-Powered Sensing. Adv. Mater. 2022, 34, 2205064. [Google Scholar] [CrossRef]
- Xu, L.; Bu, T.Z.; Yang, X.D.; Zhang, C.; Wang, Z.L. Ultrahigh Charge Density Realized by Charge Pumping at Ambient Conditions for Triboelectric Nanogenerators. Nano Energy 2018, 49, 625–633. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xu, L.; Wang, Z.L. Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy. Nanoenergy Adv. 2024, 4, 70-96. https://doi.org/10.3390/nanoenergyadv4010004
Li X, Xu L, Wang ZL. Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy. Nanoenergy Advances. 2024; 4(1):70-96. https://doi.org/10.3390/nanoenergyadv4010004
Chicago/Turabian StyleLi, Xianye, Liang Xu, and Zhong Lin Wang. 2024. "Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy" Nanoenergy Advances 4, no. 1: 70-96. https://doi.org/10.3390/nanoenergyadv4010004
APA StyleLi, X., Xu, L., & Wang, Z. L. (2024). Networking Strategies of Triboelectric Nanogenerators for Harvesting Ocean Blue Energy. Nanoenergy Advances, 4(1), 70-96. https://doi.org/10.3390/nanoenergyadv4010004