Cognitive Dysfunction among U.S. High School Students and Its Association with Time Spent on Digital Devices: A Population-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Details of Data
2.2. Study Population/Study Type/Patient Characteristics
2.3. Outcomes (Definitions) Primary, Secondary
3. Measures
3.1. Digital Device Use & Screen Time
3.2. Cognitive Dysfunction
3.3. Adequate Sleep
3.4. Substance Use
3.5. Depressed Mood
3.6. Covariates and Confounders
3.7. Statistical Analysis
4. Results
4.1. Demographic Characteristics
4.2. Digital Screen Time
4.3. Multivariable Regression Analysis
5. Discussion
Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lam, R.W.; Kennedy, S.; McIntyre, R.S.; Khullar, A. Cognitive Dysfunction in Major Depressive Disorder: Effects on Psychosocial Functioning and Implications for Treatment. Can. J. Psychiatry 2014, 59, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Data and Statistics on Children’s Mental Health | CDC. (n.d.). Available online: https://www.cdc.gov/childrensmentalhealth/data.html (accessed on 29 May 2022).
- Tremblay, L.K.; Hammill, C.; Ameis, S.H.; Bhaijiwala, M.; Mabbott, D.J.; Anagnostou, E.; Lerch, J.P.; Schachar, R.J. Tracking Inhibitory Control in Youth with ADHD: A Multi-Modal Neuroimaging Approach. Front. Psychiatry 2020, 11, 831. [Google Scholar] [CrossRef] [PubMed]
- Maalouf, F.T.; Brent, D.; Clark, L.; Tavitian, L.; McHugh, R.M.; Sahakian, B.J.; Phillips, M.L. Neurocognitive impairment in adolescent major depressive disorder: State vs. trait illness markers. J. Affect. Disord. 2011, 133, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Twenge, J.M.; Joiner, T.E.; Rogers, M.L.; Martin, G.N. Increases in Depressive Symptoms, Suicide-Related Outcomes, and Suicide Rates among U.S. Adolescents after 2010 and Links to Increased New Media Screen Time. Clin. Psychol. Sci. 2018, 6, 3–17. [Google Scholar] [CrossRef]
- Hu, B.Y.; Johnson, G.K.; Teo, T.; Wu, Z. Relationship Between Screen Time and Chinese Children’s Cognitive and Social Development. J. Res. Child. Educ. 2020, 34, 183–207. [Google Scholar] [CrossRef]
- The Common Sense Census: Media Use by Tweens and Teens, 2019 | Common Sense Media. (n.d.). Available online: https://www.commonsensemedia.org/research/the-common-sense-census-media-use-by-tweens-and-teens-2019 (accessed on 29 May 2022).
- Ko, C.-H.; Yen, J.-Y.; Yen, C.-F.; Chen, C.-S.; Chen, C.C. The association between Internet addiction and psychiatric disorder: A review of the literature. Eur. Psychiatry 2012, 27, 1–8. [Google Scholar] [CrossRef]
- Ioannidis, K.; Hook, R.; Goudriaan, A.E.; Vlies, S.; Fineberg, N.A.; Grant, J.E.; Chamberlain, S.R. Cognitive deficits in problematic internet use: Meta-analysis of 40 studies. Br. J. Psychiatry 2019, 215, 639–646. [Google Scholar] [CrossRef]
- Mathews, C.L.; Morrell, H.E.R.; Molle, J.E. Video game addiction, ADHD symptomatology, and video game reinforcement. Am. J. Drug Alcohol Abus. 2019, 45, 67–76. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Fan, H. The associations between screen time-based sedentary behavior and depression: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1524. [Google Scholar] [CrossRef]
- Cabré-Riera, A.; Torrent, M.; Donaire-Gonzalez, D.; Vrijheid, M.; Cardis, E.; Guxens, M. Telecommunication devices use, screen time and sleep in adolescents. Environ. Res. 2019, 171, 341–347. [Google Scholar] [CrossRef]
- Messias, E.; Castro, J.; Saini, A.; Usman, M.; Peeples, D. Sadness, Suicide, and Their Association with Video Game and Internet Overuse among Teens: Results from the Youth Risk Behavior Survey 2007 and 2009. Suicide Life-Threat. Behav. 2011, 41, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Sung, J.H.; Lee, J.-Y.; Lee, J.E. Differences by Sex in Association of Mental Health with Video Gaming or Other Nonacademic Computer Use among US Adolescents. Prev. Chronic Dis. 2017, 14, E117. [Google Scholar] [CrossRef] [PubMed]
- Vohr, B.R.; McGowan, E.C.; Bann, C.; Das, A.; Higgins, R.; Hintz, S. Association of High Screen-Time Use with School-age Cognitive, Executive Function, and Behavior Outcomes in Extremely Preterm Children. JAMA Pediatr. 2021, 175, 1025. [Google Scholar] [CrossRef] [PubMed]
- McHarg, G.; Ribner, A.D.; Devine, R.T.; Hughes, C. Screen Time and Executive Function in Toddlerhood: A Longitudinal Study. Front. Psychol. 2020, 11, 570392. [Google Scholar] [CrossRef]
- Gentile, D. Pathological Video-Game Use among Youth Ages 8 to 18: A national study. Psychol. Sci. 2009, 20, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y. The Nonlinear Association Between Internet Using Time for Non-Educational Purposes and Adolescent Health. J. Prev. Med. Public Health 2012, 45, 37–46. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, L.; Wang, L.; Zhang, Y.; Du, X.; Dong, G. Impaired decision-making and impulse control in Internet gaming addicts: Evidence from the comparison with recreational Internet game users. Addict. Biol. 2017, 22, 1610–1621. [Google Scholar] [CrossRef]
- Park, M.; Jung, M.H.; Lee, J.; Choi, A.R.; Chung, S.J.; Kim, B.; Kim, D.J.; Choi, J.-S. Neurophysiological and Cognitive Correlates of Error Processing Deficits in Internet Gaming Disorder. Cereb. Cortex 2020, 30, 4914–4921. [Google Scholar] [CrossRef]
- Park, S. Concentration of internet usage and its relation to exposure to negative content: Does the gender gap differ among adults and adolescents? Women’s Stud. Int. Forum 2009, 32, 98–107. [Google Scholar] [CrossRef]
- Thorisdottir, I.E.; Sigurvinsdottir, R.; Asgeirsdottir, B.B.; Allegrante, J.P.; Sigfusdottir, I.D. Active and Passive Social Media Use and Symptoms of Anxiety and Depressed Mood among Icelandic Adolescents. Cyberpsychol. Behav. Soc. Netw. 2019, 22, 535–542. [Google Scholar] [CrossRef]
- Houghton, S.; Hunter, S.C.; Rosenberg, M.; Wood, L.; Zadow, C.; Martin, K.; Shilton, T. Virtually impossible: Limiting Australian children and adolescents daily screen based media use. BMC Public Health 2015, 15, 5. [Google Scholar] [CrossRef] [PubMed]
Cognitive Dysfunction N = 3914 (37.9%) | No Cognitive Dysfunction N = 6403 (62.1%) | Total N = 10,317 (100%) | p-Value | |
---|---|---|---|---|
Age | 0.754 | |||
14 years old or younger | 464 (11.9% *) | 763 (11.9%) | 1227 (11.9%) | |
15 years old | 945 (24.2) | 1618 (25.3) | 2563 (24.9) | |
16 years old | 1035 (26.5) | 1607 (25.1) | 2642 (25.6) | |
17 years old | 944 (24.2) | 1506 (23.5) | 2450 (23.8) | |
18 years old or older | 519 (13.3) | 902 (14.1) | 1420 (13.8) | |
Sex | <0.0001 | |||
Female | 2341 (60.1) | 2753 (43.1) | 5094 (49.6) | |
Male | 1553 (39.9) | 3633 (56.9) | 5186 (50.4) | |
Race/Ethnicity | 0.001 | |||
Am Indian/Alaska Native | 28 (0.7) | 31 (0.5) | 59 (0.6) | |
Asian | 185 (4.8) | 305 (4.8) | 490 (4.8) | |
Black or African American | 301 (7.8) | 658 (10.4) | 958 (9.4) | |
Native Hawaiian/Other PI | 6 (0.2) | 25 (0.4) | 31 (0.3) | |
White | 1995 (51.9) | 3385 (53.7) | 5380 (53.0) | |
Hispanic/Latino | 364 (9.5) | 567 (9.0) | 931 (9.2) | |
Multiple-Hispanic | 757 (19.7) | 1103 (17.5) | 1860 (18.3) | |
Multiple-Non-Hispanic | 210 (5.5) | 232 (3.7) | 443 (4.4) | |
Grade | 0.176 | |||
9th grade | 1000 (25.6) | 1797 (28.1) | 2797 (27.1) | |
10th grade | 1027 (26.2) | 1593 (24.9) | 2619 (25.4) | |
11th grade | 980 (25.0) | 1475 (23.0) | 2454 (23.8) | |
12th grade | 907 (23.2) | 1539 (24.0) | 2446 (23.7) | |
Concurrent conditions | ||||
Current alcohol use | 1296 (35.8) | 1595 (26.6) | 2891 (30.0) | <0.0001 |
Current cigarette smoking | 310 (8.1) | 298 (4.7) | 608 (6.0) | <0.0001 |
Current marijuana use | 1088 (28.3) | 1108 (17.6) | 2195 (21.6) | <0.0001 |
Ever illicit drug use | 730 (18.9) | 570 (9.0) | 1300 (12.8) | <0.0001 |
Currently feeling sad or hopeless | 2433 (62.8) | 1403 (22.1) | 3836 (37.5) | <0.0001 |
Currently having adequate sleep | 609 (15.7) | 1626 (25.6) | 2235 (21.8) | <0.0001 |
Cognitive Dysfunction N = 3914 (37.9%) | No Cognitive Dysfunction N = 6403 (62.1%) | Total N = 10,317 (100%) | p-Value | |
---|---|---|---|---|
Current Video Game/Non-Work-Related Computer Use | <0.0001 | |||
No playing video/computer game | 617 (15.9) | 1138 (18.0) | 1755 (17.2) | |
<1 h per day | 365 (9.4) | 671 (10.6) | 1037 (10.2) | |
1 h per day | 277 (7.2) | 723 (11.4) | 1001 (9.8) | |
2 h per day | 531 (13.7) | 1139 (18.0) | 1670 (16.4) | |
3 h per day | 561 (14.5) | 1001 (15.8) | 1562 (15.3) | |
4 h per day | 432 (11.1) | 595 (9.4) | 1027 (10.1) | |
5 h or more per day | 1096 (28.2) | 1065 (16.8) | 2161 (21.2) | |
Current TV Use | 0.002 | |||
No TV on use | 1135 (29.2) | 1721 (27.1) | 2857 (27.9) | |
<1 h per day | 774 (19.9) | 1383 (21.8) | 2157 (21.1) | |
1 h per day | 499 (12.8) | 987 (15.5) | 1485 (14.5) | |
2 h per day | 647 (16.7) | 1084 (17.1) | 1732 (16.9) | |
3 h per day | 361 (9.3) | 604 (9.5) | 966 (9.4) | |
4 h per day | 190 (4.9) | 250 (3.9) | 440 (4.3) | |
5 h or more per day | 278 (7.1) | 316 (5.0) | 594 (5.8) |
Parameter | Adjusted Odds Ratio | Confidence Interval Lower Limit | Confidence Interval Upper Limit | p-Value |
---|---|---|---|---|
Current Video Game/Non-Work-Related Computer Use | ||||
No use | Reference | |||
<1 h per day | 1.11 | 0.87 | 1.400 | 0.399 |
1 h per day | 0.80 | 0.61 | 1.05 | 0.099 |
2 h per day | 1.01 | 0.82 | 1.23 | 0.957 |
3 h per day | 1.05 | 0.82 | 1.35 | 0.676 |
4 h per day | 1.27 | 1.02 | 1.58 | 0.035 |
5 h or more per day | 1.70 | 1.39 | 2.08 | <0.0001 |
Current TV Use | ||||
No TV use | Reference | |||
<1 h per day | 0.98 | 0.81 | 1.18 | 0.832 |
1 h per day | 0.98 | 0.79 | 1.22 | 0.861 |
2 h per day | 1.01 | 0.81 | 1.26 | 0.908 |
3 h per day | 0.88 | 0.68 | 1.13 | 0.295 |
4 h per day | 1.05 | 0.82 | 1.35 | 0.676 |
5 h or more per day | 1.05 | 0.79 | 1.39 | 0.727 |
Age | ||||
14 years old or younger | Reference | |||
15 years old | 0.99 | 0.75 | 1.30 | 0.932 |
16 years old | 0.99 | 0.71 | 1.37 | 0.930 |
17 years old | 1.00 | 0.67 | 1.50 | 0.983 |
18 years old or older | 0.99 | 0.61 | 1.60 | 0.95 |
Sex | ||||
Female | 1.65 | 1.49 | 1.82 | <0.0001 |
Male | Reference | |||
Race/Ethnicity | ||||
Am Indian/Alaska Native | 1.49 | 0.70 | 3.16 | 0.289 |
Asian | 1.25 | 0.91 | 1.73 | 0.166 |
Black or African American | 0.78 | 0.62 | 0.99 | 0.039 |
Native Hawaiian/Other PI | 0.44 | 0.15 | 1.33 | 0.140 |
Hispanic/Latino | 0.96 | 0.75 | 1.24 | 0.759 |
Multiple-Hispanic | 1.09 | 0.92 | 1.28 | 0.320 |
Multiple-Non-Hispanic | 1.36 | 1.10 | 1.70 | 0.007 |
White | Reference | |||
Grade | ||||
9th | Reference | |||
10th | 1.13 | 0.89 | 1.42 | 0.303 |
11th | 1.05 | 0.73 | 1.51 | 0.790 |
12th | 0.85 | 0.55 | 1.32 | 0.465 |
Concurrent conditions | ||||
Current Alcohol Use (Yes vs. No) | 0.99 | 0.83 | 1.18 | 0.876 |
Current Cigarette Smoking (Yes vs. No) | 0.96 | 0.70 | 1.32 | 0.798 |
Current Marijuana Use (Yes vs. No) | 1.43 | 1.22 | 1.68 | <0.0001 |
Ever Illicit Drug Use (Yes vs. No) | 1.45 | 1.12 | 1.88 | 0.006 |
Currently Feeling Sad or Hopeless (Yes vs. No) | 4.95 | 4.12 | 5.95 | <0.0001 |
Currently Having Adequate Sleep (Yes vs. No) | 0.77 | 0.65 | 0.91 | 0.003 |
C-Value (area under the ROC curve) | 0.759 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desai, S.; Satnarine, T.; Singla, P.; Mistry, A.; Gadiwala, S.; Patel, S.; Das, B.; Sharma, P.; Telsem, M.; Stuart, R.; et al. Cognitive Dysfunction among U.S. High School Students and Its Association with Time Spent on Digital Devices: A Population-Based Study. Adolescents 2022, 2, 286-295. https://doi.org/10.3390/adolescents2020022
Desai S, Satnarine T, Singla P, Mistry A, Gadiwala S, Patel S, Das B, Sharma P, Telsem M, Stuart R, et al. Cognitive Dysfunction among U.S. High School Students and Its Association with Time Spent on Digital Devices: A Population-Based Study. Adolescents. 2022; 2(2):286-295. https://doi.org/10.3390/adolescents2020022
Chicago/Turabian StyleDesai, Saral, Travis Satnarine, Puneet Singla, Ayushi Mistry, Salika Gadiwala, Sejal Patel, Bibhuti Das, Prerna Sharma, Muna Telsem, Robert Stuart, and et al. 2022. "Cognitive Dysfunction among U.S. High School Students and Its Association with Time Spent on Digital Devices: A Population-Based Study" Adolescents 2, no. 2: 286-295. https://doi.org/10.3390/adolescents2020022
APA StyleDesai, S., Satnarine, T., Singla, P., Mistry, A., Gadiwala, S., Patel, S., Das, B., Sharma, P., Telsem, M., Stuart, R., Chahal, M., Bakarr, A. A., Hsieh, Y.-C., Pathrose, R. P. M., Patel, U., Parikh, T., & Patel, S. (2022). Cognitive Dysfunction among U.S. High School Students and Its Association with Time Spent on Digital Devices: A Population-Based Study. Adolescents, 2(2), 286-295. https://doi.org/10.3390/adolescents2020022