The Who’s, What’s, and “Y”s: Y Sex Chromosome Loss and Methylation for Analysis in Male Aging and Mortality and Forensic Science Applications
Abstract
:1. Introduction
2. Y Chromosome Structure
2.1. Regions of the Y Chromosome
2.2. Assemblies and Sequencing
2.3. Loss of Y Chromosome
2.4. Y Chromosome Haplogroups
3. Y Chromosome DNA Methylation Patterns and Their Applications
3.1. Introduction to DNA Methylation
3.2. Y Haplogroup Methylation Patterns
3.3. Target Sites for DNA Methylation Within the Y Chromosome
3.4. Age-Related Methylation Patterns on Y Chromosome Genes
3.4.1. Neuroligin 4 Y-Linked (NLGN4Y)
3.4.2. DEAD-Box Helicase 3 Y-Linked (DDX3Y)
3.4.3. Transducing Beta-like 1 Protein Y-Linked (TBL1Y)
3.4.4. Testis-Specific Transcript Y-Linked 14 (TTTY14)
3.4.5. Eukaryotic Translation Initiation Factor 1A Y-Linked Protein (EIF1AY)
3.4.6. Thymosin Beta 4 Y-Linked (TMSB4Y)
3.4.7. Zinc Finger Protein Y-Linked (ZFY)
3.4.8. Proteinase Kinase Y-Linked (PRKY)
4. The Y Chromosome and DNA Methylation in a Forensic Science Context
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Accounting for sex in the genome. Nat. Med. 2017, 23, 1243. [CrossRef] [PubMed]
- Khramtsova, E.A.; Davis, L.K.; Stranger, B.E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 2019, 20, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.; Cañadas-Garre, M.; Chambers, R.; Maxwell, A.P.; McKnight, A.J. The Challenges of Chromosome Y Analysis and the Implications for Chronic Kidney Disease. Front. Genet. 2019, 10, 781. [Google Scholar] [CrossRef]
- Sampathkumar, N.K.; Bravo, J.I.; Chen, Y.; Danthi, P.S.; Donahue, E.K.; Lai, R.W.; Lu, R.; Randall, L.T.; Vinson, N.; Benayoun, B.A. Widespread sex dimorphism in aging and age-related diseases. Hum. Genet. 2020, 139, 333–356. [Google Scholar] [CrossRef]
- Helena Mangs, A.; Morris, J.B. The Human Pseudoautosomal Region (PAR): Origin, Function and Future. Curr. Genom. 2007, 8, 129–136. [Google Scholar] [CrossRef]
- Wilson, M.A. The Y chromosome and its impact on health and disease. Hum. Mol. Genet. 2021, 30, R296–R300. [Google Scholar] [CrossRef]
- Vog, P.H.; Edelmann, A.; Kirsch, S.; Henegariu, O.; Hirschmann, P.; Kiesewetter, F.; Köhn, F.M.; Schill, W.B.; Farah, S.; Ramos, C.; et al. Human Y Chromosome Azoospermia Factors (AZF) Mapped to Different Subregions in Yq11. Hum. Mol. Genet. 1996, 5, 933–943. [Google Scholar] [CrossRef]
- Bellott, D.W.; Hughes, J.F.; Skaletsky, H.; Brown, L.G.; Pyntikova, T.; Cho, T.J.; Koutseva, N.; Zaghlul, S.; Graves, T.; Rock, S.; et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014, 508, 494–499. [Google Scholar] [CrossRef] [PubMed]
- Bloomer, L.D.S.; Nelson, C.P.; Eales, J.; Denniff, M.; Christofidou, P.; Debiec, R.; Moore, J.; Consortium, C.; Zukowska-Szczechowska, E.; Goodall, A.H.; et al. Male-Specific Region of the Y Chromosome and Cardiovascular Risk. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1722–1727. [Google Scholar] [CrossRef]
- Sezgin, E.; Lind, J.M.; Shrestha, S.; Hendrickson, S.; Goedert, J.J.; Donfield, S.; Kirk, G.D.; Phair, J.P.; Troyer, J.L.; O’Brien, S.J.; et al. Association of Y chromosome haplogroup I with HIV progression, and HAART outcome. Hum. Genet. 2009, 125, 281–294. [Google Scholar] [CrossRef]
- Molina, E.; Chew, G.S.; Myers, S.A.; Clarence, E.M.; Eales, J.M.; Tomaszewski, M.; Charchar, F.J. A Novel Y-Specific Long Non-Coding RNA Associated with Cellular Lipid Accumulation in HepG2 cells and Atherosclerosis-related Genes. Sci. Rep. 2017, 7, 16710. [Google Scholar] [CrossRef] [PubMed]
- Charchar, F.J.; Bloomer, L.D.; Barnes, T.A.; Cowley, M.J.; Nelson, C.P.; Wang, Y.; Denniff, M.; Debiec, R.; Christofidou, P.; Nankervis, S.; et al. Inheritance of coronary artery disease in men: An analysis of the role of the Y chromosome. Lancet 2012, 379, 915–922. [Google Scholar] [CrossRef]
- Cáceres, A.; Jene, A.; Esko, T.; Pérez-Jurado, L.A.; González, J.R. Extreme Downregulation of Chromosome Y and Cancer Risk in Men. J. Natl. Cancer Inst. 2020, 112, 913–920. [Google Scholar] [CrossRef]
- Yao, L.; Ren, S.; Zhang, M.; Du, F.; Zhu, Y.; Yu, H.; Zhang, C.; Li, X.; Yang, C.; Liu, H.; et al. Identification of specific DNA methylation sites on the Y-chromosome as biomarker in prostate cancer. Oncotarget 2015, 6, 40611–40621. [Google Scholar] [CrossRef]
- Caceres, A.; Jene, A.; Esko, T.; Perez-Jurado, L.A.; Gonzalez, J.R. Extreme downregulation of chromosome Y and Alzheimer’s disease in men. Neurobiol. Aging 2020, 90, e150–e151. [Google Scholar] [CrossRef] [PubMed]
- Skaletsky, H.; Kuroda-Kawaguchi, T.; Minx, P.J.; Cordum, H.S.; Hillier, L.; Brown, L.G.; Repping, S.; Pyntikova, T.; Ali, J.; Bieri, T.; et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Rhie, A.; Nurk, S.; Cechova, M.; Hoyt, S.J.; Taylor, D.J.; Altemose, N.; Hook, P.W.; Koren, S.; Rautiainen, M.; Alexandrov, I.A.; et al. The complete sequence of a human Y chromosome. Nature 2023, 621, 344–354. [Google Scholar] [CrossRef]
- Hallast, P.; Ebert, P.; Loftus, M.; Yilmaz, F.; Audano, P.A.; Logsdon, G.A.; Bonder, M.J.; Zhou, W.; Höps, W.; Kim, K.; et al. Assembly of 43 human Y chromosomes reveals extensive complexity and variation. Nature 2023, 621, 355–364. [Google Scholar] [CrossRef]
- Foote, S.; Vollrath, D.; Hilton, A.; Page, D.C. The human Y chromosome: Overlapping DNA clones spanning the euchromatic region. Science 1992, 258, 60–66. [Google Scholar] [CrossRef]
- Quintana-Murci, L.; Fellous, M. The Human Y Chromosome: The Biological Role of a “Functional Wasteland”. J. Biomed. Biotechnol. 2001, 1, 18–24. [Google Scholar] [CrossRef]
- Tiepolo, L.; Zuffardi, O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum. Genet. 1976, 34, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, P.A.; Ross, A. Structural abnormalities of the Y chromosome in man. Nature 1966, 210, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Bühler, E.M. A synopsis of the human Y chromosome. Hum. Genet. 1980, 55, 145–175. [Google Scholar] [CrossRef] [PubMed]
- Weissensteiner, M.H.; Cremona, M.A.; Guiblet, W.M.; Stoler, N.; Harris, R.S.; Cechova, M.; Eckert, K.A.; Chiaromonte, F.; Huang, Y.F.; Makova, K.D. Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res. 2023, 33, 907–922. [Google Scholar] [CrossRef]
- Kuderna, L.F.K.; Lizano, E.; Julià, E.; Gomez-Garrido, J.; Serres-Armero, A.; Kuhlwilm, M.; Alandes, R.A.; Alvarez-Estape, M.; Juan, D.; Simon, H.; et al. Selective single molecule sequencing and assembly of a human Y chromosome of African origin. Nat. Commun. 2019, 10, 4. [Google Scholar] [CrossRef]
- Semizarov, D.; Glesne, D.; Laouar, A.; Schiebel, K.; Huberman, E. A lineage-specific protein kinase crucial for myeloid maturation. Proc. Natl. Acad. Sci. USA 1998, 95, 15412–15417. [Google Scholar] [CrossRef]
- Guo, X.; Dai, X.; Zhou, T.; Wang, H.; Ni, J.; Xue, J.; Wang, X. Mosaic loss of human Y chromosome: What, how and why. Hum. Genet. 2020, 139, 421–446. [Google Scholar] [CrossRef]
- Danielsson, M.; Halvardson, J.; Davies, H.; Torabi Moghadam, B.; Mattisson, J.; Rychlicka-Buniowska, E.; Jaszczyński, J.; Heintz, J.; Lannfelt, L.; Giedraitis, V.; et al. Longitudinal changes in the frequency of mosaic chromosome Y loss in peripheral blood cells of aging men varies profoundly between individuals. Eur. J. Hum. Genet. 2020, 28, 349–357. [Google Scholar] [CrossRef]
- Dumanski, J.P.; Halvardson, J.; Davies, H.; Rychlicka-Buniowska, E.; Mattisson, J.; Moghadam, B.T.; Nagy, N.; Węglarczyk, K.; Bukowska-Strakova, K.; Danielsson, M.; et al. Immune cells lacking Y chromosome show dysregulation of autosomal gene expression. Cell. Mol. Life Sci. 2021, 78, 4019–4033. [Google Scholar] [CrossRef]
- Guo, X. Loss of Y chromosome at the interface between aging and Alzheimer’s disease. Cell. Mol. Life Sci. 2021, 78, 7081–7084. [Google Scholar] [CrossRef]
- Müller, P.; Velazquez Camacho, O.; Yazbeck, A.M.; Wölwer, C.; Zhai, W.; Schumacher, J.; Heider, D.; Buettner, R.; Quaas, A.; Hillmer, A.M. Why loss of Y? A pan-cancer genome analysis of tumors with loss of Y chromosome. Comput. Struct. Biotechnol. J. 2023, 21, 1573–1583. [Google Scholar] [CrossRef] [PubMed]
- Minner, S.; Kilgué, A.; Stahl, P.; Weikert, S.; Rink, M.; Dahlem, R.; Fisch, M.; Höppner, W.; Wagner, W.; Bokemeyer, C.; et al. Y chromosome loss is a frequent early event in urothelial bladder cancer. Pathology 2010, 42, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Wallrapp, C.; Hähnel, S.; Boeck, W.; Soder, A.; Mincheva, A.; Lichter, P.; Leder, G.; Gansauge, F.; Sorio, C.; Scarpa, A.; et al. Loss of the Y chromosome is a frequent chromosomal imbalance in pancreatic cancer and allows differentiation to chronic pancreatitis. Int. J. Cancer 2001, 91, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.; Gramlich, T.; Abbott, K.; Varma, V. Y chromosome loss in esophageal carcinoma: An in situ hybridization study. Genes Chromosomes Cancer 1993, 8, 172–177. [Google Scholar] [CrossRef]
- Silva Veiga, L.C.; Bérgamo, N.A.; Reis, P.P.; Kowalski, L.P.; Rogatto, S.R. Loss of Y-chromosome does not correlate with age at onset of head and neck carcinoma: A case-control study. Braz. J. Med. Biol. Res. 2012, 45, 172–178. [Google Scholar] [CrossRef]
- Klatte, T.; Rao, P.N.; de Martino, M.; LaRochelle, J.; Shuch, B.; Zomorodian, N.; Said, J.; Kabbinavar, F.F.; Belldegrun, A.S.; Pantuck, A.J. Cytogenetic Profile Predicts Prognosis of Patients With Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 746–753. [Google Scholar] [CrossRef]
- Park, S.-J.; Jeong, S.-Y.; Kim, H.J. Y chromosome loss and other genomic alterations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array. Cancer Genet. Cytogenet. 2006, 166, 56–64. [Google Scholar] [CrossRef]
- Noveski, P.; Madjunkova, S.; Sukarova Stefanovska, E.; Matevska Geshkovska, N.; Kuzmanovska, M.; Dimovski, A.; Plaseska-Karanfilska, D. Loss of Y Chromosome in Peripheral Blood of Colorectal and Prostate Cancer Patients. PLoS ONE 2016, 11, e0146264. [Google Scholar] [CrossRef]
- Abdel-Hafiz, H.A.; Schafer, J.M.; Chen, X.; Xiao, T.; Gauntner, T.D.; Li, Z.; Theodorescu, D. Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 2023, 619, 624–631. [Google Scholar] [CrossRef]
- Persani, L.; Bonomi, M.; Lleo, A.; Pasini, S.; Civardi, F.; Bianchi, I.; Campi, I.; Finelli, P.; Miozzo, M.; Castronovo, C.; et al. Increased loss of the Y chromosome in peripheral blood cells in male patients with autoimmune thyroiditis. J. Autoimmun. 2012, 38, J193–J196. [Google Scholar] [CrossRef]
- Haitjema, S.; Kofink, D.; van Setten, J.; van der Laan, S.W.; Schoneveld, A.H.; Eales, J.; Tomaszewski, M.; de Jager, S.C.A.; Pasterkamp, G.; Asselbergs, F.W.; et al. Loss of Y Chromosome in Blood Is Associated With Major Cardiovascular Events During Follow-Up in Men After Carotid Endarterectomy. Circ. Cardiovasc. Genet. 2017, 10, e001544. [Google Scholar] [CrossRef] [PubMed]
- Sano, S.; Horitani, K.; Ogawa, H.; Halvardson, J.; Chavkin, N.W.; Wang, Y.; Sano, M.; Mattisson, J.; Hata, A.; Danielsson, M.; et al. Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 2022, 377, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Zeiher, A.; Braun, T. Mosaic loss of Y chromosome during aging. Science 2022, 377, 266–267. [Google Scholar] [CrossRef]
- Terao, C.; Momozawa, Y.; Ishigaki, K.; Kawakami, E.; Akiyama, M.; Loh, P.-R.; Genovese, G.; Sugishita, H.; Ohta, T.; Hirata, M.; et al. GWAS of mosaic loss of chromosome Y highlights genetic effects on blood cell differentiation. Nat. Commun. 2019, 10, 4719. [Google Scholar] [CrossRef]
- Lin, S.-H.; Loftfield, E.; Sampson, J.N.; Zhou, W.; Yeager, M.; Freedman, N.D.; Chanock, S.J.; Machiela, M.J. Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci. Rep. 2020, 10, 3655. [Google Scholar] [CrossRef]
- Jobling, M.A.; Tyler-Smith, C. Fathers and sons: The Y chromosome and human evolution. Trends Genet. 1995, 11, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Lleo, A.; Oertelt-Prigione, S.; Bianchi, I.; Caliari, L.; Finelli, P.; Miozzo, M.; Lazzari, R.; Floreani, A.; Donato, F.; Colombo, M.; et al. Y chromosome loss in male patients with primary biliary cirrhosis. J. Autoimmun. 2013, 41, 87–91. [Google Scholar] [CrossRef]
- Loftfield, E.; Zhou, W.; Graubard, B.I.; Yeager, M.; Chanock, S.J.; Freedman, N.D.; Machiela, M.J. Predictors of mosaic chromosome Y loss and associations with mortality in the UK Biobank. Sci. Rep. 2018, 8, 12316. [Google Scholar] [CrossRef]
- Bonnefond, A.; Skrobek, B.; Lobbens, S.; Eury, E.; Thuillier, D.; Cauchi, S.; Lantieri, O.; Balkau, B.; Riboli, E.; Marre, M.; et al. Association between large detectable clonal mosaicism and type 2 diabetes with vascular complications. Nat. Genet. 2013, 45, 1040–1043. [Google Scholar] [CrossRef]
- Grassmann, F.; Kiel, C.; den Hollander, A.I.; Weeks, D.E.; Lotery, A.; Cipriani, V.; Weber, B.H.F. Y chromosome mosaicism is associated with age-related macular degeneration. Eur. J. Hum. Genet. 2019, 27, 36–41. [Google Scholar] [CrossRef]
- Dumanski, J.P.; Lambert, J.-C.; Rasi, C.; Giedraitis, V.; Davies, H.; Grenier-Boley, B.; Lindgren, C.M.; Campion, D.; Dufouil, C.; Pasquier, F.; et al. Mosaic Loss of Chromosome Y in Blood Is Associated with Alzheimer Disease. Am. J. Hum. Genet. 2016, 98, 1208–1219. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, L.A.; Rasi, C.; Malmqvist, N.; Davies, H.; Pasupulati, S.; Pakalapati, G.; Sandgren, J.; Diaz de Ståhl, T.; Zaghlool, A.; Giedraitis, V.; et al. Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat. Genet. 2014, 46, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.A.; Laird, P.W. Cancer epigenetics comes of age. Nat. Genet. 1999, 21, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Mattisson, J.; Polekhina, G.; Bakshi, A.; Halvardson, J.; Danielsson, M.; Ameur, A.; McNeil, J.; Forsberg, L.A.; Lacaze, P. A polygenic risk score predicts mosaic loss of chromosome Y in circulating blood cells. Cell Biosci. 2021, 11, 205. [Google Scholar] [CrossRef]
- Jobling, M.A.; Tyler-Smith, C. The human Y chromosome: An evolutionary marker comes of age. Nat. Rev. Genet. 2003, 4, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Colaco, S.; Modi, D. Genetics of the human Y chromosome and its association with male infertility. Reprod. Biol. Endocrinol. 2018, 16, 14. [Google Scholar] [CrossRef]
- Malaspina, P.; Persichetti, F.; Novelletto, A.; Iodice, C.; Terrenato, L.; Wolfe, J.; Ferraro, M.; Prantera, G. The human Y chromosome shows a low level of DNA polymorphism. Ann. Hum. Genet. 1990, 54, 297–305. [Google Scholar] [CrossRef]
- Y Chromosome Consortium. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 2002, 12, 339–348. [Google Scholar] [CrossRef]
- Hammer, M.F. A recent common ancestry for human Y chromosomes. Nature 1995, 378, 376–378. [Google Scholar] [CrossRef]
- Hammer, M.F.; Horai, S. Y chromosomal DNA variation and the peopling of Japan. Am. J. Hum. Genet. 1995, 56, 951–962. [Google Scholar]
- Karafet, T.; Zegura, S.L.; Vuturo-Brady, J.; Posukh, O.; Osipova, L.; Wiebe, V.; Romero, F.; Long, J.C.; Harihara, S.; Jin, F.; et al. Y chromosome markers and Trans-Bering Strait dispersals. Am. J. Phys. Anthr. 1997, 102, 301–314. [Google Scholar] [CrossRef]
- Underhill, P.A.; Jin, L.; Zemans, R.; Oefner, P.J.; Cavalli-Sforza, L.L. A pre-Columbian Y chromosome-specific transition and its implications for human evolutionary history. Proc. Natl. Acad. Sci. USA 1996, 93, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Roewer, L.; Kayser, M.; Dieltjes, P.; Nagy, M.; Bakker, E.; Krawczak, M.; de Knijff, P. Analysis of molecular variance (AMOVA) of Y-chromosome-specific microsatellites in two closely related human populations. Hum. Mol. Genet. 1996, 5, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Karafet, T.M.; Mendez, F.L.; Meilerman, M.B.; Underhill, P.A.; Zegura, S.L.; Hammer, M.F. New binary polymorphisms reshape and increase resolution of the human Y chromosomal haplogroup tree. Genome Res. 2008, 18, 830–838. [Google Scholar] [CrossRef]
- Vigilant, L.; Stoneking, M.; Harpending, H.; Hawkes, K.; Wilson, A.C. African Populations and the Evolution of Human Mitochondrial DNA. Science 1991, 253, 1503–1507. [Google Scholar] [CrossRef]
- Schlebusch, C.M.; Skoglund, P.; Sjödin, P.; Gattepaille, L.M.; Hernandez, D.; Jay, F.; Li, S.; De Jongh, M.; Singleton, A.; Blum, M.G.; et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 2012, 338, 374–379. [Google Scholar] [CrossRef]
- Henn, B.M.; Gignoux, C.R.; Jobin, M.; Granka, J.M.; Macpherson, J.M.; Kidd, J.M.; Rodríguez-Botigué, L.; Ramachandran, S.; Hon, L.; Brisbin, A.; et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. Proc. Natl. Acad. Sci. USA 2011, 108, 5154–5162. [Google Scholar] [CrossRef]
- Lahr, M.M.; Foley, R.A. Towards a theory of modern human origins: Geography, demography, and diversity in recent human evolution. Am. J. Phys. Anthr. 1998, 107 (Suppl. S27), 137–176. [Google Scholar] [CrossRef]
- Armitage, S.J.; Jasim, S.A.; Marks, A.E.; Parker, A.G.; Usik, V.I.; Uerpmann, H.P. The southern route “out of Africa”: Evidence for an early expansion of modern humans into Arabia. Science 2011, 331, 453–456. [Google Scholar] [CrossRef]
- Ramachandran, S.; Deshpande, O.; Roseman, C.C.; Rosenberg, N.A.; Feldman, M.W.; Cavalli-Sforza, L.L. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl. Acad. Sci. USA 2005, 102, 15942–15947. [Google Scholar] [CrossRef]
- Groucutt, H.S.; Petraglia, M.D.; Bailey, G.; Scerri, E.M.; Parton, A.; Clark-Balzan, L.; Jennings, R.P.; Lewis, L.; Blinkhorn, J.; Drake, N.A.; et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthr. 2015, 24, 149–164. [Google Scholar] [CrossRef] [PubMed]
- van Oven, M.; Toscani, K.; van den Tempel, N.; Ralf, A.; Kayser, M. Multiplex genotyping assays for fine-resolution subtyping of the major human Y-chromosome haplogroups E, G, I, J, and R in anthropological, genealogical, and forensic investigations. Electrophoresis 2013, 34, 3029–3038. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, T.; Koivumäki, S.; Salmela, E.; Huoponen, K.; Sistonen, P.; Savontaus, M.L.; Lahermo, P. Regional differences among the Finns: A Y-chromosomal perspective. Gene 2006, 376, 207–215. [Google Scholar] [CrossRef]
- Grugni, V.; Battaglia, V.; Hooshiar Kashani, B.; Parolo, S.; Al-Zahery, N.; Achilli, A.; Olivieri, A.; Gandini, F.; Houshmand, M.; Sanati, M.H.; et al. Ancient migratory events in the Middle East: New clues from the Y-chromosome variation of modern Iranians. PLoS ONE 2012, 7, e41252. [Google Scholar] [CrossRef]
- Erzurumluoglu, A.M.; Baird, D.; Richardson, T.G.; Timpson, N.J.; Rodriguez, S. Using Y-Chromosomal Haplogroups in Genetic Association Studies and Suggested Implications. Genes 2018, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.; Akey, J.M.; Jakobsson, M.; Pritchard, J.K.; Tishkoff, S.; Willerslev, E. Tracing the peopling of the world through genomics. Nature 2017, 541, 302–310. [Google Scholar] [CrossRef]
- Poznik, G.D.; Xue, Y.; Mendez, F.L.; Willems, T.F.; Massaia, A.; Wilson Sayres, M.A.; Ayub, Q.; McCarthy, S.A.; Narechania, A.; Kashin, S.; et al. Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat. Genet. 2016, 48, 593–599. [Google Scholar] [CrossRef]
- Karmin, M.; Saag, L.; Vicente, M.; Wilson Sayres, M.A.; Järve, M.; Talas, U.G.; Rootsi, S.; Ilumäe, A.M.; Mägi, R.; Mitt, M.; et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 2015, 25, 459–466. [Google Scholar] [CrossRef]
- Voskarides, K.; Hadjipanagi, D.; Papazachariou, L.; Griffin, M.; Panayiotou, A.G. Evidence for Contribution of the Y Chromosome in Atherosclerotic Plaque Occurrence in Men. Genet. Test. Mol. Biomark. 2014, 18, 552–556. [Google Scholar] [CrossRef]
- Shankar, R.R.; Charchar, F.J.; Eckert, G.J.; Saha, C.; Tu, W.; Dominiczak, A.F.; Pratt, J.H. Studies of an association in boys of blood pressure and the Y chromosome. Am. J. Hypertens 2007, 20, 27–31. [Google Scholar] [CrossRef]
- Rodríguez, S.; Chen, X.-h.; Miller, G.J.; Day, I.N.M. Non-recombining chromosome Y haplogroups and centromeric HindIII RFLP in relation to blood pressure in 2,743 middle-aged Caucasian men from the UK. Hum. Genet. 2005, 116, 311–318. [Google Scholar] [CrossRef] [PubMed]
- O’Keeffe, L.M.; Howe, L.D.; Fraser, A.; Hughes, A.D.; Wade, K.H.; Anderson, E.L.; Lawlor, D.A.; Erzurumluoglu, A.M.; Davey-Smith, G.; Rodriguez, S.; et al. Associations of Y chromosomal haplogroups with cardiometabolic risk factors and subclinical vascular measures in males during childhood and adolescence. Atherosclerosis 2018, 274, 94–103. [Google Scholar] [CrossRef]
- de Haan, H.G.; van Hylckama Vlieg, A.; van der Gaag, K.J.; de Knijff, P.; Rosendaal, F.R. Male-specific risk of first and recurrent venous thrombosis: A phylogenetic analysis of the Y chromosome. J. Thromb. Haemost. 2016, 14, 1971–1977. [Google Scholar] [CrossRef] [PubMed]
- Russo, V.E.; Martienssen, R.A.; Riggs, A.D. Epigenetic Mechanisms of Gene Regulation; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1996. [Google Scholar]
- Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002, 16, 6–21. [Google Scholar] [CrossRef]
- Robertson, K.D. Epigenetic Mechanisms of Gene Regulation. In DNA Methylation and Cancer Therapy; Szyf, M., Ed.; Springer: Boston, MA, USA, 2005; pp. 13–30. [Google Scholar]
- Robertson, K.D. DNA methylation and human disease. Nat Rev Genet 2005, 6, 597–610. [Google Scholar] [CrossRef]
- Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and Non-CpG Methylation in Epigenetic Gene Regulation and Brain Function. Genes 2017, 8, 148. [Google Scholar] [CrossRef] [PubMed]
- Yoder, J.A.; Walsh, C.P.; Bestor, T.H. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997, 13, 335–340. [Google Scholar] [CrossRef]
- Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004, 429, 457–463. [Google Scholar] [CrossRef]
- Gama-Sosa, M.A.; Slagel, V.A.; Trewyn, R.W.; Oxenhandler, R.; Kuo, K.C.; Gehrke, C.W.; Ehrlich, M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983, 11, 6883–6894. [Google Scholar] [CrossRef]
- Lapeyre, J.-N.; Walker, M.S.; Becker, F.F. DNA methylation and methylase levels in normal and malignant mouse hepatic tissues. Carcinogenesis 1981, 2, 873–878. [Google Scholar] [CrossRef]
- Minatani, N.; Waraya, M.; Yamashita, K.; Kikuchi, M.; Ushiku, H.; Kojo, K.; Ema, A.; Nishimiya, H.; Kosaka, Y.; Katoh, H.; et al. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1) Gene in Primary Breast Cancer. PLoS ONE 2016, 11, e0144862. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Waraya, M.; Kim, M.S.; Sidransky, D.; Katada, N.; Sato, T.; Nakamura, T.; Watanabe, M. Detection of methylated CDO1 in plasma of colorectal cancer; a PCR study. PLoS ONE 2014, 9, e113546. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 2013, 14, 3156. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Damluji Abdulla, A.; Nanna Michael, G.; Rymer, J.; Kochar, A.; Lowenstern, A.; Baron Suzanne, J.; Narins Craig, R.; Alkhouli, M. Chronological vs Biological Age in Interventional Cardiology. JACC Cardiovasc. Interv. 2024, 17, 961–978. [Google Scholar] [CrossRef]
- Castagnola, M.J.; Medina-Paz, F.; Zapico, S.C. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int. J. Mol. Sci. 2024, 25, 4917. [Google Scholar] [CrossRef]
- Fiorito, G.; McCrory, C.; Robinson, O.; Carmeli, C.; Ochoa-Rosales, C.; Zhang, Y.; Colicino, E.; Dugué, P.A.; Artaud, F.; McKay, G.J.; et al. Socioeconomic position, lifestyle habits and biomarkers of epigenetic aging: A multi-cohort analysis. Aging 2019, 11, 2045–2070. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Horvath, S.; Zhang, Y.; Langfelder, P.; Kahn, R.S.; Boks, M.P.; van Eijk, K.; van den Berg, L.H.; Ophoff, R.A. Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012, 13, R97. [Google Scholar] [CrossRef]
- Marioni, R.E.; Shah, S.; McRae, A.F.; Chen, B.H.; Colicino, E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015, 16, 25. [Google Scholar] [CrossRef]
- Jovanovic, T.; Vance, L.A.; Cross, D.; Knight, A.K.; Kilaru, V.; Michopoulos, V.; Klengel, T.; Smith, A.K. Exposure to Violence Accelerates Epigenetic Aging in Children. Sci. Rep. 2017, 7, 8962. [Google Scholar] [CrossRef] [PubMed]
- Pavanello, S.; Campisi, M.; Tona, F.; Lin, C.D.; Iliceto, S. Exploring Epigenetic Age in Response to Intensive Relaxing Training: A Pilot Study to Slow Down Biological Age. Int. J. Env. Res. Public Health 2019, 16, 3074. [Google Scholar] [CrossRef]
- Spólnicka, M.; Zbieć-Piekarska, R.; Karp, M.; Machnicki, M.M.; Własiuk, P.; Makowska, Ż.; Pięta, A.; Gambin, T.; Gasperowicz, P.; Branicki, W.; et al. DNA methylation signature in blood does not predict calendar age in patients with chronic lymphocytic leukemia but may alert to the presence of disease. Forensic Sci. Int. Genet. 2018, 34, e15–e17. [Google Scholar] [CrossRef]
- Fiorito, G.; Polidoro, S.; Dugué, P.-A.; Kivimaki, M.; Ponzi, E.; Matullo, G.; Guarrera, S.; Assumma, M.B.; Georgiadis, P.; Kyrtopoulos, S.A.; et al. Social adversity and epigenetic aging: A multi-cohort study on socioeconomic differences in peripheral blood DNA methylation. Sci. Rep. 2017, 7, 16266. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Koch, Z.; Ideker, T. Epigenetic aging: Biological age prediction and informing a mechanistic theory of aging. J. Intern. Med. 2022, 292, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Vidaki, A.; Montiel González, D.; Planterose Jiménez, B.; Kayser, M. Male-specific age estimation based on Y-chromosomal DNA methylation. Aging 2021, 13, 6442–6458. [Google Scholar] [CrossRef]
- Kananen, L.; Marttila, S. Ageing-associated changes in DNA methylation in X and Y chromosomes. Epigenetics Chromatin 2021, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Cabrera Zapata, L.E.; Garcia-Segura, L.M.; Cambiasso, M.J.; Arevalo, M.A. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int. J. Mol. Sci. 2022, 23, 12288. [Google Scholar] [CrossRef]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Bollas, A.; Wang, Y.; Au, K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021, 39, 1348–1365. [Google Scholar] [CrossRef]
- Simpson, J.T.; Workman, R.E.; Zuzarte, P.C.; David, M.; Dursi, L.J.; Timp, W. Detecting DNA cytosine methylation using nanopore sequencing. Nat. Methods 2017, 14, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.F.; Rozen, S. Genomics and genetics of human and primate y chromosomes. Annu. Rev. Genom. Hum. Genet. 2012, 13, 83–108. [Google Scholar] [CrossRef] [PubMed]
- Esteller-Cucala, P.; Palmada-Flores, M.; Kuderna, L.F.K.; Fontsere, C.; Serres-Armero, A.; Dabad, M.; Torralvo, M.; Faella, A.; Ferrández-Peral, L.; Llovera, L.; et al. Y chromosome sequence and epigenomic reconstruction across human populations. Commun. Biol. 2023, 6, 623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, C.-C.; Yang, C.; Meng, H.; Agbagwa, I.O.; Wang, L.-X.; Wang, Y.; Yan, S.; Ren, S.; Sun, Y.; et al. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved. PLoS ONE 2016, 11, e0146402. [Google Scholar] [CrossRef]
- Aref-Eshghi, E.; Bend, E.G.; Colaiacovo, S.; Caudle, M.; Chakrabarti, R.; Napier, M.; Brick, L.; Brady, L.; Carere, D.A.; Levy, M.A.; et al. Diagnostic Utility of Genome-wide DNA Methylation Testing in Genetically Unsolved Individuals with Suspected Hereditary Conditions. Am. J. Hum. Genet. 2019, 104, 685–700. [Google Scholar] [CrossRef]
- van Dongen, J.; Nivard, M.G.; Willemsen, G.; Hottenga, J.-J.; Helmer, Q.; Dolan, C.V.; Ehli, E.A.; Davies, G.E.; van Iterson, M.; Breeze, C.E.; et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 2016, 7, 11115. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, M.; Li, L.; Zhang, W.; Xiao, C.; Li, S.; Ma, Y.; Tao, D.; Liu, Y.; Lin, L.; et al. Evidence for the association of Y-chromosome haplogroups with susceptibility to spermatogenic failure in a Chinese Han population. J. Med. Genet. 2008, 45, 210–215. [Google Scholar] [CrossRef]
- Lindström, S.; Adami, H.O.; Adolfsson, J.; Wiklund, F. Y chromosome haplotypes and prostate cancer in Sweden. Clin. Cancer Res. 2008, 14, 6712–6716. [Google Scholar] [CrossRef]
- Kuroki, Y.; Fukami, M. Y Chromosome Genomic Variations and Biological Significance in Human Diseases and Health. Cytogenet. Genome Res. 2023, 163, 5–13. [Google Scholar] [CrossRef]
- Kuroki, Y.; Iwamoto, T.; Lee, J.; Yoshiike, M.; Nozawa, S.; Nishida, T.; Ewis, A.A.; Nakamura, H.; Toda, T.; Tokunaga, K.; et al. Spermatogenic ability is different among males in different Y chromosome lineage. J. Hum. Genet. 1999, 44, 289–292. [Google Scholar] [CrossRef]
- Sato, Y.; Shinka, T.; Iwamoto, T.; Yamauchi, A.; Nakahori, Y. Y chromosome haplogroup d2* lineage is associated with azoospermia in Japanese males. Biol. Reprod. 2013, 88, 107. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, F.; Xia, Y.; Wu, B.; Gu, A.; Lu, N.; Wang, S.; Shen, H.; Jin, L.; Wang, X. The association of Y chromosome haplogroups with spermatogenic failure in the Han Chinese. J. Hum. Genet. 2007, 52, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Lund, J.B.; Li, S.; Christensen, K.; Mengel-From, J.; Soerensen, M.; Marioni, R.E.; Starr, J.; Pattie, A.; Deary, I.J.; Baumbach, J.; et al. Age-dependent DNA methylation patterns on the Y chromosome in elderly males. Aging Cell 2020, 19, e12907. [Google Scholar] [CrossRef] [PubMed]
- Weuve, J.; Barnes, L.L.; Mendes de Leon, C.F.; Rajan, K.B.; Beck, T.; Aggarwal, N.T.; Hebert, L.E.; Bennett, D.A.; Wilson, R.S.; Evans, D.A. Cognitive Aging in Black and White Americans: Cognition, Cognitive Decline, and Incidence of Alzheimer Disease Dementia. Epidemiology 2018, 29. [Google Scholar] [CrossRef]
- Li, G.; Wang, C.; Guan, X.; Bai, Y.; Feng, Y.; Wei, W.; Meng, H.; Fu, M.; He, M.; Zhang, X.; et al. Age-related DNA methylation on Y chromosome and their associations with total mortality among Chinese males. Aging Cell 2022, 21, e13563. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, K.; Wei, X.; Li, J.; Wang, S.; Wang, Z.; Zhou, Y.; Zha, L.; Luo, H.; Song, F. Developing a male-specific age predictive model based on Y-CpGs for forensic analysis. Forensic Sci. Int. 2023, 343, 111566. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, X.; Wang, Y. A framework for analyzing DNA methylation data from Illumina Infinium HumanMethylation450 BeadChip. BMC Bioinform. 2018, 19, 115. [Google Scholar] [CrossRef]
- Zar, M.S.; Shahid, A.A.; Shahzad, M.S.; Shin, K.-J.; Lee, H.Y.; Lee, S.-S.; Israr, M.; Wiegand, P.; Kulstein, G. Forensic SNP Genotyping with SNaPshot: Development of a Novel In-house SBE Multiplex SNP Assay. J. Forensic Sci. 2018, 63, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C. Neuroligins and neurexins link synaptic function to cognitive disease. Nature 2008, 455, 903–911. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Wu, K.; Pandey, S.; Lehr, A.W.; Li, Y.; Bemben, M.A.; Badger, J.D., II; Lauzon, J.L.; Wang, T.; Zaghloul, K.A.; et al. A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y. Neuron 2020, 106, 759–768.e757. [Google Scholar] [CrossRef]
- Maxeiner, S.; Sester, M.; Krasteva-Christ, G. Novel human sex-typing strategies based on the autism candidate gene NLGN4X and its male-specific gametologue NLGN4Y. Biol. Sex Differ. 2019, 10, 62. [Google Scholar] [CrossRef] [PubMed]
- Ditton, H.J.; Zimmer, J.; Kamp, C.; Rajpert-De Meyts, E.; Vogt, P.H. The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum. Mol. Genet. 2004, 13, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.-C.; Chang, W.-C.; Shieh, S.-Y.; Tarn, W.-Y. DDX3 Regulates Cell Growth through Translational Control of Cyclin E1. Mol. Cell. Biol. 2010, 30, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.C.; Chi, C.W.; Chau, G.Y.; Li, F.Y.; Tsai, Y.H.; Wu, J.C.; Wu Lee, Y.H. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virus-associated hepatocellular carcinoma and is involved in cell growth control. Oncogene 2006, 25, 1991–2003. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Yu, H.I.; Cho, W.C.; Tarn, W.Y. DDX3 modulates cell adhesion and motility and cancer cell metastasis via Rac1-mediated signaling pathway. Oncogene 2015, 34, 2790–2800. [Google Scholar] [CrossRef]
- Botlagunta, M.; Krishnamachary, B.; Vesuna, F.; Winnard, P.T., Jr.; Bol, G.M.; Patel, A.H.; Raman, V. Expression of DDX3 Is Directly Modulated by Hypoxia Inducible Factor-1 Alpha in Breast Epithelial Cells. PLoS ONE 2011, 6, e17563. [Google Scholar] [CrossRef]
- Sun, M.; Song, L.; Zhou, T.; Gillespie, G.Y.; Jope, R.S. The role of DDX3 in regulating Snail. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 2011, 1813, 438–447. [Google Scholar] [CrossRef]
- McGivern, D.R.; Lemon, S.M. Tumor Suppressors, Chromosomal Instability, and Hepatitis C Virus–Associated Liver Cancer. Annu. Rev. Pathol. Mech. Dis. 2009, 4, 399–415. [Google Scholar] [CrossRef]
- Gueler, B.; Sonne, S.B.; Zimmer, J.; Hilscher, B.; Hilscher, W.; Græm, N.; Rajpert-De Meyts, E.; Vogt, P.H. AZFa protein DDX3Y is differentially expressed in human male germ cells during development and in testicular tumours: New evidence for phenotypic plasticity of germ cells ‡. Hum. Reprod. 2012, 27, 1547–1555. [Google Scholar] [CrossRef]
- Lee, C.H.; Lin, S.H.; Yang, S.F.; Yang, S.M.; Chen, M.K.; Lee, H.; Ko, J.L.; Chen, C.J.; Yeh, K.T. Low/negative expression of DDX3 might predict poor prognosis in non-smoker patients with oral cancer. Oral Dis. 2014, 20, 76–83. [Google Scholar] [CrossRef]
- Ariumi, Y. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front. Genet. 2014, 5, 423. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.-W.; Liu, W.-S.; Wang, J.; Chen, C.-Y.; Cheng, Y.-W.; Lee, H. Reduced p21WAF1/CIP1 via Alteration of p53-DDX3 Pathway Is Associated with Poor Relapse-Free Survival in Early-Stage Human Papillomavirus–Associated Lung Cancer. Clin. Cancer Res. 2011, 17, 1895–1905. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, T.; Endo, T.; Isotani, A.; Ogawa, M.; Ikawa, M. An azoospermic factor gene, Ddx3y and its paralog, Ddx3x are dispensable in germ cells for male fertility. J. Reprod. Dev. 2019, 65, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Venkataramanan, S.; Gadek, M.; Calviello, L.; Wilkins, K.; Floor, S.N. DDX3X and DDX3Y are redundant in protein synthesis. RNA 2021, 27, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Abdelhaleem, M. RNA helicases: Regulators of differentiation. Clin. Biochem. 2005, 38, 499–503. [Google Scholar] [CrossRef]
- Foresta, C.; Ferlin, A.; Moro, E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum. Mol. Genet. 2000, 9, 1161–1169. [Google Scholar] [CrossRef]
- Vakilian, H.; Mirzaei, M.; Sharifi Tabar, M.; Pooyan, P.; Habibi Rezaee, L.; Parker, L.; Haynes, P.A.; Gourabi, H.; Baharvand, H.; Salekdeh, G.H. DDX3Y, a Male-Specific Region of Y Chromosome Gene, May Modulate Neuronal Differentiation. J. Proteome Res. 2015, 14, 3474–3483. [Google Scholar] [CrossRef]
- Högbom, M.; Collins, R.; van den Berg, S.; Jenvert, R.-M.; Karlberg, T.; Kotenyova, T.; Flores, A.; Hedestam, G.B.K.; Schiavone, L.H. Crystal Structure of Conserved Domains 1 and 2 of the Human DEAD-box Helicase DDX3X in Complex with the Mononucleotide AMP. J. Mol. Biol. 2007, 372, 150–159. [Google Scholar] [CrossRef]
- Chao, C.-H.; Chen, C.-M.; Cheng, P.-L.; Shih, J.-W.; Tsou, A.-P.; Wu Lee, Y.-H. DDX3, a DEAD Box RNA Helicase with Tumor Growth–Suppressive Property and Transcriptional Regulation Activity of the p21waf1/cip1 Promoter, Is a Candidate Tumor Suppressor. Cancer Res. 2006, 66, 6579–6588. [Google Scholar] [CrossRef]
- Wu, D.W.; Lin, P.L.; Cheng, Y.W.; Huang, C.C.; Wang, L.; Lee, H. DDX3 enhances oncogenic KRAS-induced tumor invasion in colorectal cancer via the β-catenin/ZEB1 axis. Oncotarget 2016, 7, 22687–22699. [Google Scholar] [CrossRef]
- Merz, C.; Urlaub, H.; Will, C.L.; Lührmann, R. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 2007, 13, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Askjaer, P.; Bachi, A.; Wilm, M.; Bischoff, F.R.; Weeks, D.L.; Ogniewski, V.; Ohno, M.; Niehrs, C.; Kjems, J.; Mattaj, I.W.; et al. RanGTP-Regulated Interactions of CRM1 with Nucleoporins and a Shuttling DEAD-Box Helicase. Mol. Cell. Biol. 1999, 19, 6276–6285. [Google Scholar] [CrossRef] [PubMed]
- Yedavalli, V.S.R.K.; Neuveut, C.; Chi, Y.-H.; Kleiman, L.; Jeang, K.-T. Requirement of DDX3 DEAD Box RNA Helicase for HIV-1 Rev-RRE Export Function. Cell 2004, 119, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.J.; Hellen, C.U.T.; Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11, 113–127. [Google Scholar] [CrossRef]
- Meyfour, A.; Ansari, H.; Pahlavan, S.; Mirshahvaladi, S.; Rezaei-Tavirani, M.; Gourabi, H.; Baharvand, H.; Salekdeh, G.H. Y Chromosome Missing Protein, TBL1Y, May Play an Important Role in Cardiac Differentiation. J. Proteome Res. 2017, 16, 4391–4402. [Google Scholar] [CrossRef]
- Lai, E.C. Notch signaling: Control of cell communication and cell fate. Development 2004, 131, 965–973. [Google Scholar] [CrossRef] [PubMed]
- Tung, J.C.; Paige, S.L.; Ratner, B.D.; Murry, C.E.; Giachelli, C.M. Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Rep. 2014, 2, 271–281. [Google Scholar] [CrossRef]
- Tagariello, A.; Breuer, C.; Birkner, Y.; Schmidt, S.; Koch, A.M.; Cesnjevar, R.; Ruffer, A.; Dittrich, S.; Schneider, H.; Winterpacht, A.; et al. Functional Null Mutations in the Gonosomal Homologue Gene TBL1Y are Associated with Non-Syndromic Coarctation of the Aorta. Curr. Mol. Med. 2012, 12, 199–205. [Google Scholar] [CrossRef]
- D’Amato, G.; Luxán, G.; de la Pompa, J.L. Notch signalling in ventricular chamber development and cardiomyopathy. FEBS J. 2016, 283, 4223–4237. [Google Scholar] [CrossRef]
- Di Stazio, M.; Collesi, C.; Vozzi, D.; Liu, W.; Myers, M.; Morgan, A.; D′Adamo, P.A.; Girotto, G.; Rubinato, E.; Giacca, M.; et al. TBL1Y: A new gene involved in syndromic hearing loss. Eur. J. Hum. Genet. 2019, 27, 466–474. [Google Scholar] [CrossRef]
- Huang, K.K.; Ramnarayanan, K.; Zhu, F.; Srivastava, S.; Xu, C.; Tan, A.L.K.; Lee, M.; Tay, S.; Das, K.; Xing, M.; et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell 2018, 33, 137–150.e135. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, L.; Xue, L.; Luo, Y.; Liu, Z.; Guo, J. Long non-coding RNA TTTY14 promotes cell proliferation and functions as a prognostic biomarker in testicular germ cell tumor. Heliyon 2023, 9, e16082. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.F.; Lorsch, J.R. Should I Stay or Should I Go? Eukaryotic Translation Initiation Factors 1 and 1A Control Start Codon Recognition *. J. Biol. Chem. 2008, 283, 27345–27349. [Google Scholar] [CrossRef]
- Miklos, D.B.; Kim, H.T.; Miller, K.H.; Guo, L.; Zorn, E.; Lee, S.J.; Hochberg, E.P.; Wu, C.J.; Alyea, E.P.; Cutler, C.; et al. Antibody responses to H-Y minor histocompatibility antigens correlate with chronic graft-versus-host disease and disease remission. Blood 2005, 105, 2973–2978. [Google Scholar] [CrossRef]
- Heidecker, B.; Lamirault, G.; Kasper, E.K.; Wittstein, I.S.; Champion, H.C.; Breton, E.; Russell, S.D.; Hall, J.; Kittleson, M.M.; Baughman, K.L.; et al. The gene expression profile of patients with new-onset heart failure reveals important gender-specific differences†. Eur. Heart J. 2010, 31, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Fermin, D.R.; Barac, A.; Lee, S.; Polster, S.P.; Hannenhalli, S.; Bergemann, T.L.; Grindle, S.; Dyke, D.B.; Pagani, F.; Miller, L.W.; et al. Sex and Age Dimorphism of Myocardial Gene Expression in Nonischemic Human Heart Failure. Circ. Cardiovasc. Genet. 2008, 1, 117–125. [Google Scholar] [CrossRef]
- Tian, Y.; Stamova, B.; Jickling, G.C.; Xu, H.; Liu, D.; Ander, B.P.; Bushnell, C.; Zhan, X.; Turner, R.J.; Davis, R.R.; et al. Y Chromosome Gene Expression in the Blood of Male Patients With Ischemic Stroke Compared With Male Controls. Gend. Med. 2012, 9, 68–75.e63. [Google Scholar] [CrossRef]
- Tommasi, S.; Mangia, A.; Iannelli, G.; Chiarappa, P.; Rossi, E.; Ottini, L.; Mottolese, M.; Zoli, W.; Zuffardi, O.; Paradiso, A. Gene copy number variation in male breast cancer by aCGH. Cell. Oncol. 2011, 34, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef]
- Wong, H.Y.; Wang, G.M.; Croessmann, S.; Zabransky, D.J.; Chu, D.; Garay, J.P.; Cidado, J.; Cochran, R.L.; Beaver, J.A.; Aggarwal, A.; et al. TMSB4Y is a candidate tumor suppressor on the Y chromosome and is deleted in male breast cancer. Oncotarget 2015, 6, 44927–44940. [Google Scholar] [CrossRef]
- Lu, B.; Yu, Y.; Xing, X.-L.; Liu, R.-Y. miR-183/TMSB4Y, a new potential signaling axis, involving in the progression of laryngeal cancer via modulating cell adhesion. J. Recept. Signal Transduct. 2022, 42, 133–140. [Google Scholar] [CrossRef]
- Torikai, H.; Akatsuka, Y.; Miyazaki, M.; Warren, E.H., III; Oba, T.; Tsujimura, K.; Motoyoshi, K.; Morishima, Y.; Kodera, Y.; Kuzushima, K.; et al. A Novel HLA-A*3303-Restricted Minor Histocompatibility Antigen Encoded by an Unconventional Open Reading Frame of Human TMSB4Y Gene1. J. Immunol. 2004, 173, 7046–7054. [Google Scholar] [CrossRef] [PubMed]
- Toder, R.; Wakefield, M.J.; Graves, J.A. The minimal mammalian Y chromosome—the marsupial Y as a model system. Cytogenet. Cell Genet. 2000, 91, 285–292. [Google Scholar] [CrossRef]
- Palmer, M.S.; Sinclair, A.H.; Berta, P.; Ellis, N.A.; Goodfellow, P.N.; Abbas, N.E.; Fellous, M. Genetic evidence that ZFY is not the testis-determining factor. Nature 1989, 342, 937–939. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.S.; Berta, P.; Sinclair, A.H.; Pym, B.; Goodfellow, P.N. Comparison of human ZFY and ZFX transcripts. Proc. Natl. Acad. Sci. USA 1990, 87, 1681–1685. [Google Scholar] [CrossRef] [PubMed]
- Rhie, S.K.; Yao, L.; Luo, Z.; Witt, H.; Schreiner, S.; Guo, Y.; Perez, A.A.; Farnham, P.J. ZFX acts as a transcriptional activator in multiple types of human tumors by binding downstream of transcription start sites at the majority of CpG island promoters. Genome Res. 2018, 28, 310–320. [Google Scholar] [CrossRef]
- Yang, H.; Lu, Y.; Zheng, Y.; Yu, X.; Xia, X.; He, X.; Feng, W.; Xing, L.; Ling, Z. shRNA-mediated silencing of ZFX attenuated the proliferation of breast cancer cells. Cancer Chemother. Pharmacol. 2014, 73, 569–576. [Google Scholar] [CrossRef]
- Jiang, R.; Wang, J.C.; Sun, M.; Zhang, X.Y.; Wu, H. Zinc finger X-chromosomal protein (ZFX) promotes solid agar colony growth of osteosarcoma cells. Oncol. Res. 2012, 20, 565–570. [Google Scholar] [CrossRef]
- Jiang, M.; Xu, S.; Yue, W.; Zhao, X.; Zhang, L.; Zhang, C.; Wang, Y. The role of ZFX in non-small cell lung cancer development. Oncol. Res. 2012, 20, 171–178. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, Z.; Huang, Y.; Sun, T.; Chen, S.; Wu, T.; Chen, G.; Xie, X.; Li, B.; Du, Z. The Zfx gene is expressed in human gliomas and is important in the proliferation and apoptosis of the human malignant glioma cell line U251. J. Exp. Clin. Cancer Res. 2011, 30, 114. [Google Scholar] [CrossRef]
- Fang, Q.; Fu, W.H.; Yang, J.; Li, X.; Zhou, Z.S.; Chen, Z.W.; Pan, J.H. Knockdown of ZFX suppresses renal carcinoma cell growth and induces apoptosis. Cancer Genet. 2014, 207, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Huang, Z.; Zhou, W.; Wu, Q.; Sloan, A.E.; Ouyang, G.; McLendon, R.E.; Yu, J.S.; Rich, J.N.; Bao, S. The zinc finger transcription factor ZFX is required for maintaining the tumorigenic potential of glioblastoma stem cells. Stem Cells 2014, 32, 2033–2047. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.; Wang, X.; Li, M.; Wu, X.; Wang, Z.; Wu, W.; Zhang, Z.; Zhang, Y.; Zhao, S.; Liu, S.; et al. Zinc finger X-chromosomal protein (ZFX) is a significant prognostic indicator and promotes cellular malignant potential in gallbladder cancer. Cancer Biol. Ther 2015, 16, 1462–1470. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Yu, Z.; Lian, M.; Ma, H.; Tai, J.; Zhang, L.; Han, D. Knockdown of zinc finger protein, X-linked (ZFX) inhibits cell proliferation and induces apoptosis in human laryngeal squamous cell carcinoma. Mol. Cell. Biochem. 2012, 360, 301–307. [Google Scholar] [CrossRef]
- Nikpour, P.; Emadi-Baygi, M.; Mohammad-Hashem, F.; Maracy, M.R.; Haghjooy-Javanmard, S. Differential expression of ZFX gene in gastric cancer. J. Biosci. 2012, 37, 85–90. [Google Scholar] [CrossRef]
- Li, K.; Zhu, Z.C.; Liu, Y.J.; Liu, J.W.; Wang, H.T.; Xiong, Z.Q.; Shen, X.; Hu, Z.L.; Zheng, J. ZFX knockdown inhibits growth and migration of non-small cell lung carcinoma cell line H1299. Int. J. Clin. Exp. Pathol. 2013, 6, 2460–2467. [Google Scholar]
- Ni, W.; Perez, A.A.; Schreiner, S.; Nicolet, C.M.; Farnham, P.J. Characterization of the ZFX family of transcription factors that bind downstream of the start site of CpG island promoters. Nucleic Acids Res. 2020, 48, 5986–6000. [Google Scholar] [CrossRef] [PubMed]
- Schiebel, K.; Mertz, A.; Winkelmann, M.; Gläser, B.; Schempp, W.; Rappold, G. FISH localization of the human Y-homolog of protein kinase PRKX (PRKY) to Yp11.2 and two pseudogenes to 15q26 and Xq12-->q13. Cytogenet. Cell Genet. 1997, 76, 49–52. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, Q.; Ang, X.; Hu, C.; Ouyang, J.; Zhang, J. The research of the application of a new urinary biomarker PCA-M of prostate cancer (PSA from 4 to 20 ng/ml). All Life 2022, 15, 234–239. [Google Scholar] [CrossRef]
- Schiebel, K.; Winkelmann, M.; Mertz, A.; Xu, X.; Page, D.C.; Weil, D.; Petit, C.; Rappold, G.A. Abnormal XY interchange between a novel isolated protein kinase gene, PRKY, and its homologue, PRKX, accounts for one third of all (Y+)XX males and (Y-)XY females. Hum Mol Genet 1997, 6, 1985–1989. [Google Scholar] [CrossRef]
- Jobling, M.A.; Williams, G.; Schiebel, K.; Pandya, A.; McElreavey, K.; Salas, L.; Rappold, G.A.; Affara, N.A.; Tyler-Smith, C. A selective difference between human Y-chromosomal DNA haplotypes. Curr. Biol. 1998, 8, 1391–1394. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, H.-P.; Amsler, K.; Hyink, D.; Wilson, P.D.; Burrow, C.R. PRKX, A Phylogenetically and Functionally Distinct cAMP-Dependent Protein Kinase, Activates Renal Epithelial Cell Migration and Morphogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 9260–9265. [Google Scholar] [CrossRef]
- Shewale, J.G.; Sikka Sc Fau-Schneida, E.; Schneida, E.; Fau-Sinha, S.K.; Sinha, S.K. DNA profiling of azoospermic semen samples from vasectomized males by using Y-PLEX 6 amplification kit. J. Forensic Sci. 2003, 48, 127–129. [Google Scholar] [CrossRef]
- Prinz, M.; Sansone, M. Y chromosome-specific short tandem repeats in forensic casework. Croat. Med. J. 2001, 42, 288–291. [Google Scholar]
- Syndercombe Court, D. The Y chromosome and its use in forensic DNA analysis. Emerg. Top. Life Sci. 2021, 5, 427–441. [Google Scholar] [CrossRef]
- Sahakyan, H.; Margaryan, A.; Saag, L.; Karmin, M.; Flores, R.; Haber, M.; Kushniarevich, A.; Khachatryan, Z.; Bahmanimehr, A.; Parik, J.; et al. Origin and diffusion of human Y chromosome haplogroup J1-M267. Sci. Rep. 2021, 11, 6659. [Google Scholar] [CrossRef] [PubMed]
- Semino, O.; Magri, C.; Benuzzi, G.; Lin, A.A.; Al-Zahery, N.; Battaglia, V.; Maccioni, L.; Triantaphyllidis, C.; Shen, P.; Oefner, P.J.; et al. Origin, diffusion, and differentiation of Y-chromosome haplogroups E and J: Inferences on the neolithization of Europe and later migratory events in the Mediterranean area. Am. J. Hum. Genet. 2004, 74, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-L.; Kwon, O.-H.; Kim, J.H.; Yoo, H.-S.; Lee, H.-C.; Woo, K.-M.; Kim, S.-Y.; Lee, S.-H.; Kim, Y.S. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci. Int. Genet. 2014, 13, 147–153. [Google Scholar] [CrossRef]
- Ballantyne, K.N.; Keerl, V.; Wollstein, A.; Choi, Y.; Zuniga, S.B.; Ralf, A.; Vermeulen, M.; de Knijff, P.; Kayser, M. A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages. Forensic Sci. Int. Genet. 2012, 6, 208–218. [Google Scholar] [CrossRef]
- Vidaki, A.; Daniel, B.; Court, D.S. Forensic DNA methylation profiling--potential opportunities and challenges. Forensic Sci Int Genet 2013, 7, 499–507. [Google Scholar] [CrossRef]
- Vidaki, A.; Díez López, C.; Carnero-Montoro, E.; Ralf, A.; Ward, K.; Spector, T.; Bell, J.T.; Kayser, M. Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci. Int. Genet. 2017, 31, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Yet, I.; Tsai, P.-C.; Castillo-Fernandez, J.E.; Carnero-Montoro, E.; Bell, J.T. Genetic and Environmental Impacts on DNA Methylation Levels in Twins. Epigenomics 2016, 8, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Tollefsbol, T. Personalized Epigenetics; Academic Press: Cambridge, MA, USA, 2024; p. 782. [Google Scholar]
- Gerra, M.C.; Dallabona, C.; Cecchi, R. Epigenetic analyses in forensic medicine: Future and challenges. Int. J. Leg. Med. 2024, 138, 701–719. [Google Scholar] [CrossRef] [PubMed]
- Heyn, H.; Moran, S.; Hernando-Herraez, I.; Sayols, S.; Gomez, A.; Sandoval, J.; Monk, D.; Hata, K.; Marques-Bonet, T.; Wang, L.; et al. DNA methylation contributes to natural human variation. Genome Res. 2013, 23, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
- Vidaki, A.; Kayser, M. Recent progress, methods and perspectives in forensic epigenetics. Forensic Sci. Int. Genet. 2018, 37, 180–195. [Google Scholar] [CrossRef]
- Schneider, P.M.; Prainsack, B.; Kayser, M. The Use of Forensic DNA Phenotyping in Predicting Appearance and Biogeographic Ancestry. Dtsch. Ärzteblatt Int. 2019, 51–52, 873–880. [Google Scholar] [CrossRef]
- Kayser, M.; Branicki, W.; Parson, W.; Phillips, C. Recent advances in Forensic DNA Phenotyping of appearance, ancestry and age. Forensic Sci. Int. Genet. 2023, 65, 102870. [Google Scholar] [CrossRef]
- Walsh, S.; Chaitanya, L.; Breslin, K.; Muralidharan, C.; Bronikowska, A.; Pospiech, E.; Koller, J.; Kovatsi, L.; Wollstein, A.; Branicki, W.; et al. Global skin colour prediction from DNA. Hum. Genet. 2017, 136, 847–863. [Google Scholar] [CrossRef]
- Chaitanya, L.; Breslin, K.; Zuñiga, S.; Wirken, L.; Pośpiech, E.; Kukla-Bartoszek, M.; Sijen, T.; Knijff, P.; Liu, F.; Branicki, W.; et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Sci. Int. Genet. 2018, 35, 123–135. [Google Scholar] [CrossRef]
- Maroñas, O.; Phillips, C.; Söchtig, J.; Gomez-Tato, A.; Cruz, R.; Alvarez-Dios, J.; de Cal, M.C.; Ruiz, Y.; Fondevila, M.; Carracedo, Á.; et al. Development of a forensic skin colour predictive test. Forensic Sci. Int. Genet. 2014, 13, 34–44. [Google Scholar] [CrossRef]
- Peng, F.; Zhu, G.; Hysi, P.G.; Eller, R.J.; Chen, Y.; Li, Y.; Hamer, M.A.; Zeng, C.; Hopkins, R.L.; Jacobus, C.L.; et al. Genome-Wide Association Studies Identify Multiple Genetic Loci Influencing Eyebrow Color Variation in Europeans. J. Investig. Dermatol. 2019, 139, 1601–1605. [Google Scholar] [CrossRef] [PubMed]
- Kukla-Bartoszek, M.; Pośpiech, E.; Woźniak, A.; Boroń, M.; Karłowska-Pik, J.; Teisseyre, P.; Zubańska, M.; Bronikowska, A.; Grzybowski, T.; Płoski, R.; et al. DNA-based predictive models for the presence of freckles. Forensic Sci. Int. Genet. 2019, 42, 252–259. [Google Scholar] [CrossRef]
- Hernando, B.; Ibañez, M.V.; Deserio-Cuesta, J.A.; Soria-Navarro, R.; Vilar-Sastre, I.; Martinez-Cadenas, C. Genetic determinants of freckle occurrence in the Spanish population: Towards ephelides prediction from human DNA samples. Forensic Sci. Int. Genet. 2018, 33, 38–47. [Google Scholar] [CrossRef]
- Adhikari, K.; Fontanil, T.; Cal, S.; Mendoza-Revilla, J.; Fuentes-Guajardo, M.; Chacón-Duque, J.C.; Al-Saadi, F.; Johansson, J.A.; Quinto-Sanchez, M.; Acuña-Alonzo, V.; et al. A genome-wide association scan in admixed Latin Americans identifies loci influencing facial and scalp hair features. Nat. Commun. 2016, 7, 10815. [Google Scholar] [CrossRef]
- Chen, Y.; Hysi, P.; Maj, C.; Heilmann-Heimbach, S.; Spector, T.D.; Liu, F.; Kayser, M. Genetic prediction of male pattern baldness based on large independent datasets. Eur. J. Hum. Genet. 2023, 31, 321–328. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Zhu, G.; Hysi, P.G.; Wu, S.; Adhikari, K.; Breslin, K.; Pospiech, E.; Hamer, M.A.; Peng, F.; et al. Meta-analysis of genome-wide association studies identifies 8 novel loci involved in shape variation of human head hair. Hum. Mol. Genet. 2018, 27, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Pośpiech, E.; Chen, Y.; Kukla-Bartoszek, M.; Breslin, K.; Aliferi, A.; Andersen, J.D.; Ballard, D.; Chaitanya, L.; Freire-Aradas, A.; van der Gaag, K.J.; et al. Towards broadening Forensic DNA Phenotyping beyond pigmentation: Improving the prediction of head hair shape from DNA. Forensic Sci. Int. Genet. 2018, 37, 241–251. [Google Scholar] [CrossRef]
- Marcińska, M.; Pośpiech, E.; Abidi, S.; Andersen, J.D.; van den Berge, M.; Carracedo, Á.; Eduardoff, M.; Marczakiewicz-Lustig, A.; Morling, N.; Sijen, T.; et al. Evaluation of DNA variants associated with androgenetic alopecia and their potential to predict male pattern baldness. PLoS ONE 2015, 10, e0127852. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.X.; Sidorenko, J.; Wu, Y.; Kemper, K.E.; Yang, J.; Wray, N.R.; Robinson, M.R.; Visscher, P.M. Dissection of genetic variation and evidence for pleiotropy in male pattern baldness. Nat. Commun 2018, 9, 5407. [Google Scholar] [CrossRef]
- Liu, F.; Hendriks, A.E.; Ralf, A.; Boot, A.M.; Benyi, E.; Sävendahl, L.; Oostra, B.A.; van Duijn, C.; Hofman, A.; Rivadeneira, F.; et al. Common DNA variants predict tall stature in Europeans. Hum. Genet. 2014, 133, 587–597. [Google Scholar] [CrossRef]
- Liu, F.; Zhong, K.; Jing, X.; Uitterlinden, A.G.; Hendriks, A.E.J.; Drop, S.L.S.; Kayser, M. Update on the predictability of tall stature from DNA markers in Europeans. Forensic Sci. Int. Genet. 2019, 42, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.R.; Esko, T.; Yang, J.; Vedantam, S.; Pers, T.H.; Gustafsson, S.; Chu, A.Y.; Estrada, K.; Luan, J.; Kutalik, Z.; et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 2014, 46, 1173–1186. [Google Scholar] [CrossRef] [PubMed]
- Lello, L.; Avery, S.G.; Tellier, L.; Vazquez, A.I.; de Los Campos, G.; Hsu, S.D.H. Accurate Genomic Prediction of Human Height. Genetics 2018, 210, 477–497. [Google Scholar] [CrossRef] [PubMed]
- Yengo, L.; Vedantam, S.; Marouli, E.; Sidorenko, J.; Bartell, E.; Sakaue, S.; Graff, M.; Eliasen, A.U.; Jiang, Y.; Raghavan, S.; et al. A saturated map of common genetic variants associated with human height. Nature 2022, 610, 704–712. [Google Scholar] [CrossRef]
- Naue, J.; Hoefsloot, H.C.J.; Kloosterman, A.D.; Verschure, P.J. Forensic DNA methylation profiling from minimal traces: How low can we go? Forensic Sci. Int. Genet. 2018, 33, 17–23. [Google Scholar] [CrossRef]
- Vidaki, A.A.; Kayser, M. From forensic epigenetics to forensic epigenomics: Broadening DNA investigative intelligence. Genome Biol. 2017, 18, 238. [Google Scholar] [CrossRef]
- Correia Dias, H.; Cunha, E.; Corte Real, F.; Manco, L. Challenges and (Un)Certainties for DNAm Age Estimation in Future. Forensic Sci. 2022, 2, 601–614. [Google Scholar] [CrossRef]
- Refn, M.R.; Kampmann, M.-L.; Morling, N.; Tfelt-Hansen, J.; Børsting, C.; Pereira, V. Prediction of chronological age and its applications in forensic casework: Methods, current practices, and future perspectives. Forensic Sci. Res. 2023, 8, 85–97. [Google Scholar] [CrossRef]
- Bocklandt, S.; Lin, W.; Sehl, M.E.; Sánchez, F.J.; Sinsheimer, J.S.; Horvath, S.; Vilain, E. Epigenetic Predictor of Age. PLoS ONE 2011, 6, e14821. [Google Scholar] [CrossRef]
- Bekaert, B.; Kamalandua, A.; Zapico, S.C.; Van de Voorde, W.; Decorte, R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics 2015, 10, 922–930. [Google Scholar] [CrossRef]
- Zapico, S.C.; Gauthier, Q.; Antevska, A.; McCord, B.R. Identifying Methylation Patterns in Dental Pulp Aging: Application to Age-at-Death Estimation in Forensic Anthropology. Int. J. Mol. Sci. 2021, 22, 3717. [Google Scholar] [CrossRef] [PubMed]
- Hannum, G.; Guinney, J.; Zhao, L.; Zhang, L.; Hughes, G.; Sadda, S.; Klotzle, B.; Bibikova, M.; Fan, J.-B.; Gao, Y.; et al. Genome-wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Mol. Cell 2013, 49, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Zbieć-Piekarska, R.; Spólnicka, M.; Kupiec, T.; Makowska, Ż.; Spas, A.; Parys-Proszek, A.; Kucharczyk, K.; Płoski, R.; Branicki, W. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci. Int. Genet. 2015, 14, 161–167. [Google Scholar] [CrossRef]
- Aliferi, A.; Sundaram, S.; Ballard, D.; Freire-Aradas, A.; Phillips, C.; Lareu, M.V.; Court, D.S. Combining current knowledge on DNA methylation-based age estimation towards the development of a superior forensic DNA intelligence tool. Forensic Sci. Int. Genet. 2022, 57, 102637. [Google Scholar] [CrossRef]
- Maulani, C.; Auerkari, E.I. Age estimation using DNA methylation technique in forensics: A systematic review. Egypt. J. Forensic Sci. 2020, 10, 38. [Google Scholar] [CrossRef]
- Phillips, C. Forensic genetic analysis of bio-geographical ancestry. Forensic Sci. Int. Genet. 2015, 18, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Park, S.U.; So, M.H.; Lee, H.Y. Age prediction using DNA methylation of Y-chromosomal CpGs in semen samples. Forensic Sci. Int. Genet. 2024, 69, 103007. [Google Scholar] [CrossRef]
- Ji, Z.; Xing, Y.; Li, J.; Feng, X.; Yang, F.; Zhu, B.; Yan, J. Male-specific age prediction based on Y-chromosome DNA methylation with blood using pyrosequencing. Forensic Sci. Int. Genet. 2024, 71, 103050. [Google Scholar] [CrossRef]
CpG Site | Hyper/Hypomethylation | Gene |
---|---|---|
cg17816615 [108,109,127] | Hypo | DDX3Y |
cg01988452 [108] | Hypo | EIF1AY |
cg13308744 [108,109,127] | Hypo | EIF1AY |
cg02233183 [109] | Hyper | NLGN4Y |
cg02340092 [109] | Hyper | NLGN4Y |
cg03055837 [125] | Hyper | NLGN4Y |
cg03278611 [109] | Hyper | NLGN4Y |
cg03706273 [127] | Hyper | NLGN4Y |
cg04691144 [108,109,127] | Hyper | NLGN4Y |
cg06247034 [108,109] | Hyper | NLGN4Y |
cg09748856 [109] | Hypo | NLGN4Y |
cg27214488 [109] | Hyper | NLGN4Y |
cg27443332 [109,127] | Hyper | NLGN4Y |
cg18168924 [109] | Hyper | PRKY |
cg20401549 [109] | Hypo | PRKY |
cg01707559 [109,125,127] | Hyper | TBL1Y |
cg02839557 [109] | Hyper | TBL1Y |
cg08921682 [108] | Hyper | TBL1Y |
cg09728865 [108] | Hyper | TBL1Y |
cg14180491 [127] | Hyper | TBL1Y |
cg27355713 [109] | Hyper | TBL1Y |
cg27611726 [109] | Hyper | TBL1Y |
cg00214611 [119] | Hyper | TMSB4Y |
cg14463736 [109] | Hyper | TMSB4Y |
cg26198148 [127] | Hyper | TMSB4Y |
cg00212031 [109] | Hyper | TTTY14 |
cg03244189 [109,127] | Hyper | TTTY14 |
cg06628792 [108] | Hyper | TTTY14 |
cg11816202 [106,127] | Hyper | TTTY14 |
cg13765957 [109] | Hyper | TTTY14 |
cg13845521 [109,127] | Hyper | TTTY14 |
cg15345074 [109,127] | Hyper | TTTY14 |
cg02616328 [109] | Hypo | ZFY |
cg06558765 [109] | Hypo | ZFY |
cg14170959 [108] | Hyper | ZFY |
Gene | Protein | Function | Established Associations |
---|---|---|---|
NLGN4Y | neuroligin-4 Y-linked | Neural signal mediator | Neurodevelopmental disease |
Autism spectrum disorder | |||
Cognitive disease | |||
DDX3Y | DEAD-box helicase 3 Y-linked | (Possibly) RNA metabolism | Male infertility (azoospermia) |
(Possibly) neuronal differentiation | Germ cell reduction | ||
(Possibly) cell cycle regulation | Cancer (breast, non-seminoma testicular, oral, papillomavirus-associated lung) | ||
TBL1Y | Transducing beta-like 1 Y-linked | Activator of Notch gene | Heart issues (myopathies, coarctation, abnormal contraction) |
Hearing loss | |||
Cancer (gastric) | |||
TTTY14 | Testis-specific transcript Y-linked 14 | (Possibly) Cell proliferation | Alcohol drinking |
Tumor cell proliferation (testicular germ cell) | |||
EIF1AY | Eukaryotic translation initiation factor 1A Y-linked | Ribosome dissociation enhancer | Heart failure |
Translation initiation regulator | Post-ischemic stroke recovery | ||
Antigen production | Transplantation recovery | ||
TMSB4Y | Thymosin beta 4 Y-linked | Tumor suppressing | Cancer (breast, prostate adenocarcinoma, laryngeal) |
Beta actin interacting | Transplantation recovery | ||
ZFY | Zinc finger protein Y-linked | (Possibly) Cellular housekeeping | Unknown |
PRKY | Proteinase kinase Y-linked | (Possibly) Kidney development | Prostate cancer |
(Possibly) Immune cell maturation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapozhnikov, M.; Medina-Paz, F.; Castagnola, M.J.; Zapico, S.C. The Who’s, What’s, and “Y”s: Y Sex Chromosome Loss and Methylation for Analysis in Male Aging and Mortality and Forensic Science Applications. Forensic Sci. 2024, 4, 610-634. https://doi.org/10.3390/forensicsci4040043
Sapozhnikov M, Medina-Paz F, Castagnola MJ, Zapico SC. The Who’s, What’s, and “Y”s: Y Sex Chromosome Loss and Methylation for Analysis in Male Aging and Mortality and Forensic Science Applications. Forensic Sciences. 2024; 4(4):610-634. https://doi.org/10.3390/forensicsci4040043
Chicago/Turabian StyleSapozhnikov, Mira, Francisco Medina-Paz, María Josefina Castagnola, and Sara C. Zapico. 2024. "The Who’s, What’s, and “Y”s: Y Sex Chromosome Loss and Methylation for Analysis in Male Aging and Mortality and Forensic Science Applications" Forensic Sciences 4, no. 4: 610-634. https://doi.org/10.3390/forensicsci4040043
APA StyleSapozhnikov, M., Medina-Paz, F., Castagnola, M. J., & Zapico, S. C. (2024). The Who’s, What’s, and “Y”s: Y Sex Chromosome Loss and Methylation for Analysis in Male Aging and Mortality and Forensic Science Applications. Forensic Sciences, 4(4), 610-634. https://doi.org/10.3390/forensicsci4040043