Chemical Analysis of Sexual Lubricant Residue: A Comparison of Medical Examination Swabs Analyzed Using Spectroscopic Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction Process
2.3. Instrumental Parameters
2.3.1. ATR-FTIR Spectroscopy
2.3.2. Raman Spectroscopy
2.4. Statistical Analysis
3. Results
3.1. FTIR Spectroscopy Screening for Lubricant Residues
3.1.1. The Extraction of Silicone-Based Condom Lubricants
3.1.2. The Extraction of Water-Based Lubricants
3.2. Raman Spectroscopy Screening for Lubricant Residues
3.2.1. The Extraction of Silicone-Based Condom Lubricants
3.2.2. The Extraction of Water-Based Lubricants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.C.; Gaensslen, R.E.; Bigbee, P.D.; Kearney, J.J. Guidelines for the Collection and Preservation of DNA Evidence. J. Forensic Identif. 1991, 41, 344–356. [Google Scholar]
- Lee, H.C.; Ladd, C.; Scherczinger, C.A.; Bourke, M.T. Forensic applications of DNA typing: Part 2: Collection and preservation of DNA evidence. Am. J. Forensic Med. Pathol. 1998, 19, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Bruijns, B.B.; Tiggelaar, R.M.; Gardeniers, H. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs. J. Forensic Sci. 2018, 63, 1492–1499. [Google Scholar] [CrossRef]
- Brownlow, R.J.; Dagnall, K.E.; Ames, C.E. A comparison of DNA collection and retrieval from two swab types (cotton and nylon flocked swab) when processed using three QIAGEN extraction methods. J. Forensic Sci. 2012, 57, 713–717. [Google Scholar] [CrossRef]
- Hedman, J.; Akel, Y.; Jansson, L.; Hedell, R.; Wallmark, N.; Forsberg, C.; Ansell, R. Enhanced forensic DNA recovery with appropriate swabs and optimized swabbing technique. Forensic Sci. Int. Genet. 2021, 53, 102491. [Google Scholar] [CrossRef] [PubMed]
- Verdon, T.J.; Mitchell, R.J.; van Oorschot, R.A.H. Swabs as DNA Collection Devices for Sampling Different Biological Materials from Different Substrates. J. Forensic Sci. 2014, 59, 1080–1089. [Google Scholar] [CrossRef]
- Sweet, D.; Lorente, M.; Lorente, J.A.; Valenzuela, A.; Villanueva, E. An improved method to recover saliva from human skin: The double swab technique. J. Forensic Sci. 1997, 42, 320–322. [Google Scholar] [CrossRef]
- Kumar, P.; Sairam, C.; Srivastava, J.; Behura, A.; Kumar, D. Chapter 2—Synthesis of Cotton Fiber and Its Structure. In Natural and Synthetic Fiber Reinforced Composites: Synthesis, Properties and Applications; Rangappa, S.M., Kumar Rajak, D., Siengchin, S., Eds.; Wiley-VCH: Weinheim, Germany, 2022; p. 17. [Google Scholar]
- Lloyd, J.B.F.; King, R.M. One-Pot Processing of Swabs for Organic Explosives and Firearms Residue Traces. J. Forensic Sci. 1990, 35, 956–959. [Google Scholar] [CrossRef]
- Tang, J.; Ostrander, J.; Wickenheiser, R.; Hall, A. Touch DNA in forensic science: The use of laboratory-created eccrine fingerprints to quantify DNA loss. Forensic Sci. Int. Synergy 2019, 2, 1–16. [Google Scholar] [CrossRef]
- Thiede, C.; Prange-Krex, G.; Freiberg-Richter, J.; Bornhäuser, M.; Ehninger, G. Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transpl. 2000, 25, 575–577. [Google Scholar] [CrossRef]
- Burger, M.F.; Song, E.Y.; Schumm, J.W. Buccal DNA samples for DNA typing: New collection and processing methods. BioTechniques 2005, 39, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.L.; Presler-Jur, P.; Mills, H.; Miles, S. Evidence Collection and Analysis for Touch Deoxyribonucleic Acid in Groping and Sexual Assault Cases. J. Forensic Nurs. 2021, 17, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.P.; Gordon, A.L. Analysis of Condom Lubricants for Forensic Casework. J. Forensic Sci. 2007, 52, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, M.S.; Stasulli, D.M.; Sobestanovich, E.M.; Bille, T.W. Evaluation of Methods to Improve the Extraction and Recovery of DNA from Cotton Swabs for Forensic Analysis. PLoS ONE 2015, 9, e116351. [Google Scholar] [CrossRef]
- Benschop, C.C.; Wiebosch, D.C.; Kloosterman, A.D.; Sijen, T. Post-coital vaginal sampling with nylon flocked swabs improves DNA typing. Forensic Sci. Int. Genet. 2010, 4, 115–121. [Google Scholar] [CrossRef]
- Wise, N.M.; Wagner, S.J.; Worst, T.J.; Sprague, J.E.; Oechsle, C.M. Comparison of swab types for collection and analysis of microorganisms. MicrobiologyOpen 2021, 10, e1244. [Google Scholar] [CrossRef]
- Seiberle, I.; Währer, J.; Kron, S.; Flury, K.; Girardin, M.; Schocker, A.; Schulz, I. Collaborative swab performance comparison and the impact of sampling solution volumes on DNA recovery. Forensic Sci. Int. Genet. 2022, 59, 102716. [Google Scholar] [CrossRef]
- Canfield, J.R.; Jollie, M.; Worst, T.; Oechsle, C. Comparison of swab types & elution buffers for collection and analysis of intact cells to aid in deconvolution of complex DNA mixtures. Forensic Sci. Int. 2022, 340, 111448. [Google Scholar]
- Finger, W.R. Condom use increasing. Network 1998, 18, 20–23. [Google Scholar]
- Maric, M.; Bridge, C. Characterizing and classifying water-based lubricants using direct analysis in real time® time of flight mass spectrometry. Forensic Sci. Int. 2016, 266, 73–79. [Google Scholar] [CrossRef]
- Musah, R.A.; Cody, R.B.; Dane, A.J.; Vuong, A.L.; Shepard, J.R. Direct analysis in real time mass spectrometry for analysis of sexual assault evidence. Rapid Commun. Mass. Spectrom. 2012, 26, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.A.L.; Andersen, N.; Marić, M.; Bridge, C. Implementing Raman Spectroscopy as a tool to characterize sexual lubricants. Forensic Chem. 2021, 24, 100329. [Google Scholar] [CrossRef]
- Cho, L.-l.; Huang, K. In Identification of Condom Lubricants by FT-IR Spectroscopy. Forensic. Sci. J. 2012, 11, 33–40. [Google Scholar]
- Maynard, P.; Allwell, K.; Roux, C.; Dawson, M.; Royds, D. A protocol for the forensic analysis of condom and personal lubricants found in sexual assault cases. Forensic Sci. Int. 2001, 124, 140–156. [Google Scholar] [CrossRef] [PubMed]
- Bridge, C.; Giardina, M. Stronger associations of oil-based sexual lubricants and hygiene products using GC × GC–MS. Forensic Chem. 2020, 17, 100207. [Google Scholar] [CrossRef]
- Coyle, T.; Anwar, N. A novel approach to condom lubricant analysis: In-situ analysis of swabs by FT-Raman Spectroscopy and its effects on DNA analysis. Sci. Justice 2009, 49, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Burger, F.; Dawson, M.; Roux, C.; Maynard, P.; Doble, P.; Kirkbride, P. Forensic analysis of condom and personal lubricants by capillary electrophoresis. Talanta 2005, 67, 368–376. [Google Scholar] [CrossRef]
- Proni, G.; Cohen, P.; Huggins, L.-A.; Nesnas, N. Comparative analysis of condom lubricants on pre & post-coital vaginal swabs using AccuTOF-DART. Forensic Sci. Int. 2017, 280, 87–94. [Google Scholar]
- Sexual Lubricant Database. National Center for Forensic Science, University of Central Florida. Available online: https://ncfs.ucf.edu/databases/sal/ (accessed on 15 July 2023).
- Turner, D.A.; Goodpaster, J.V. The effects of season and soil type on microbial degradation of gasoline residues from incendiary devices. Anal. Bioanal. Chem. 2013, 405, 1593–1599. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Methylene Chloride; Regulation Under the Toxic Substances Control Act (TSCA); Environmental Protection Agency: Washington, DC, USA, 2023; Document Number 2023-09184; pp. 28284–28346.
- University of Pennsylvania Environmental Health & Radiation Safety. Fact Sheet: Solvent. Available online: https://ehrs.upenn.edu/health-safety/lab-safety/chemical-hygiene-plan/fact-sheets/fact-sheet-solvent-alternatives (accessed on 8 May 2023).
- Profillidis, V.A.; Botzoris, G.N. Chapter 5—Statistical Methods for Transport Demand Modeling. In Modeling of Transport Demand; Profillidis, V.A., Botzoris, G.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 163–224. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- ASTM Standard E1618-19; Standard Test Method for Ignitable Liquid Residues in Extracts from Fire Debris Samples by Gas Chromatography-Mass Spectrometry. ASTM International: West Conshohocken, PA, USA, 2003. Available online: www.astm.org (accessed on 15 July 2023).
Fiber Type | Manufacturer | Model Number | Shaft Material |
---|---|---|---|
Polyester | Puritan | 25-806 2PD | Plastic |
Polyester | Cardinal Health | A5005-1 | Plastic |
Rayon | Puritan | 25-806 2PR TT | Plastic |
Rayon | McKesson | 24-808 | Paper |
Foam | Puritan 5571 | 25-1805 1PF RND | Plastic |
Foam | Puritan 5621 | 25-1805 1PF RND | Plastic |
Cotton | Puritan | 25-806 1WC FDNA | Wood |
Cotton | McKesson | 24-106-2S | Wood |
Sample | Solvent | Fiber Type | Swab Manufacturer | Lubricant Source |
---|---|---|---|---|
1 | Hexane | Polyester | 1 | Silicone-based Condom |
2 | DCM/MeOH | Polyester | 1 | Silicone-based Condom |
3 | MeOH | Polyester | 1 | Silicone-based Condom |
4 | Hexane | Polyester | 1 | Water-Based Bottle |
5 | DCM/MeOH | Polyester | 1 | Water-Based Bottle |
6 | MeOH | Polyester | 1 | Water-Based Bottle |
7 | Hexane | Polyester | 1 | Blank |
8 | DCM/MeOH | Polyester | 1 | Blank |
9 | MeOH | Polyester | 1 | Blank |
10 | Hexane | Polyester | 2 | Silicone-based Condom |
11 | DCM/MeOH | Polyester | 2 | Silicone-based Condom |
12 | MeOH | Polyester | 2 | Silicone-based Condom |
13 | Hexane | Polyester | 2 | Water-Based Bottle |
14 | DCM/MeOH | Polyester | 2 | Water-Based Bottle |
15 | MeOH | Polyester | 2 | Water-Based Bottle |
16 | Hexane | Polyester | 2 | Blank |
17 | DCM/MeOH | Polyester | 2 | Blank |
18 | MeOH | Polyester | 2 | Blank |
FTIR Data | ||||
---|---|---|---|---|
Methanol | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.747 ± 0.033 | 0.528 ± 0.013 | 9.15 × 10−5 | Lube Preferred |
W Cotton Pur | 0.734 ± 0.038 | 0.601 ± 0.026 | 0.019 | Lube Preferred |
W Foam 5571 | 0.826 ± 0.017 | 0.708 ± 0.04 | 0.011 | Lube Preferred |
W Foam 5621 | 0.728 ± 0.023 | 0.559 ± 0.036 | 1.00 × 10−3 | Lube Preferred |
W Poly CH | 0.879 ± 0.004 | 0.807 ± 0.012 | 0.003 | Lube Preferred |
W Poly Pur | 0.861 ± 0.006 | 0.684 ± 0.043 | 3.60 × 10−5 | Lube Preferred |
W Rayon Mck | 0.584 ± 0.048 | 0.852 ± 0.040 | 0.001 | Swab Preferred |
W Rayon Pur | 0.685 ± 0.002 | 0.801 ± 0.018 | 1.96 × 10−5 | Swab Preferred |
C Cotton McK | 0.816 ± 0.022 | 0.717 ± 0.022 | 0.027 | Lube Preferred |
C Cotton Pur | 0.843 ± 0.016 | 0.774 ± 0.018 | 0.07 | Insignificant |
C Foam 5571 | 0.748 ± 0.030 | 0.668 ± 0.050 | 0.155 | Insignificant |
C Foam 5621 | 0.592 ± 0.044 | 0.741 ± 0.035 | 0.016 | Swab Preferred |
C Poly CH | 0.657 ± 0.045 | 0.616 ± 0.118 | 0.6 | Insignificant |
C Poly Pur | 0.662 ± 0.044 | 0.754 ± 0.053 | 0.1261 | Insignificant |
C Rayon Mck | 0.336 ± 0.009 | 0.849 ± 0.014 | 1.47 × 10−20 | Swab Preferred |
C Rayon Pur | 0.309 ± 0.001 | 0.824 ± 0.012 | 2.39 × 10−28 | Swab Preferred |
Hexane | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.017 ± 0.327 | 0.579 ± 0.288 | 1.00 × 10−3 | Swab Preferred |
W Cotton Pur | 0.445 ± 0.241 | 0.839 ± 0.006 | 0.004 | Swab Preferred |
W Foam 5571 | 0.385 ± 0.381 | 0.703 ± 0.070 | 0.05 | Swab Preferred |
W Foam 5621 | 0.270 ± 0.444 | 0.516 ± 0.097 | 0.151 | Insignificant |
W Poly CH | 0.269 ± 0.290 | 0.622 ± 0.058 | 0.015 | Swab Preferred |
W Poly Pur | 0.329 ± 0.337 | 0.758 ± 0.020 | 0.006 | Swab Preferred |
W Rayon Mck | 0.380 ± 0.438 | 0.815 ± 0.027 | 0.013 | Swab Preferred |
W Rayon Pur | 0.325 ± 0.395 | 0.832 ± 0.024 | 0.003 | Swab Preferred |
C Cotton McK | 0.565 ± 0.025 | 0.421 ± 0.024 | 0.003 | Lube Preferred |
C Cotton Pur | 0.576 ± 0.015 | 0.457 ± 0.027 | 0.007 | Lube Preferred |
C Foam 5571 | 0.487 ± 0.061 | 0.560 ± 0.105 | 0.362 | Insignificant |
C Foam 5621 | 0.406 ± 0.065 | 0.559 ± 0.072 | 0.049 | Swab Preferred |
C Poly CH | 0.637 ± 0.030 | 0.522 ± 0.071 | 0.064 | Insignificant |
C Poly Pur | 0.715 ± 0.018 | 0.594 ± 0.059 | 0.022 | Lube Preferred |
C Rayon Mck | 0.470 ± 0.120 | 0.764 ± 0.044 | 0.003 | Swab Preferred |
C Rayon Pur | 0.582 ± 0.029 | 0.242 ± 0.050 | 1.60 × 10−7 | Lube Preferred |
DCM/MeOH | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.663 ± 0.032 | 0.614 ± 0.026 | 0.344 | Insignificant |
W Cotton Pur | 0.642 ± 0.019 | 0.579 ± 0.012 | 0.106 | Insignificant |
W Foam 5571 | 0.491 ± 0.108 | 0.681 ± 0.123 | 0.059 | Insignificant |
W Foam 5621 | 0.635 ± 0.038 | 0.619 ± 0.043 | 0.779 | Insignificant |
W Poly CH | 0.699 ± 0.049 | 0.501 ± 0.128 | 0.222 | Insignificant |
W Poly Pur | 0.747 ± 0.018 | 0.706 ± 0.015 | 0.283 | Insignificant |
W Rayon Mck | 0.729 ± 0.040 | 0.704 ± 0.047 | 0.672 | Insignificant |
W Rayon Pur | 0.661 ± 0.051 | 0.709 ± 0.028 | 0.433 | Insignificant |
C Cotton McK | 0.798 ± 0.018 | 0.755 ± 0.015 | 0.268 | Insignificant |
C Cotton Pur | 0.670 ± 0.054 | 0.768 ± 0.017 | 0.108 | Insignificant |
C Foam 5571 | 0.407 ± 0.156 | 0.672 ± 0.053 | 0.015 | Swab Preferred |
C Foam 5621 | 0.445 ± 0.088 | 0.632 ± 0.046 | 0.025 | Swab Preferred |
C Poly CH | 0.517 ± 0.032 | 0.605 ± 0.119 | 0.222 | Insignificant |
C Poly Pur | 0.643 ± 0.014 | 0.833 ± 0.016 | 4.76 × 10−6 | Swab Preferred |
C Rayon Mck | 0.914 ± 0.001 | 0.623 ± 0.066 | 7.21 × 10−8 | Lube Preferred |
C Rayon Pur | 0.875 ± 0.003 | 0.544 ± 0.020 | 8.84 × 10−17 | Lube Preferred |
Instrument | Solvent | Mean ELR–ELS PCC | Mean EBR–ELS PCC |
---|---|---|---|
FTIR | Hexane | 0.610 | 0.429 |
MeOH | 0.799 | 0.658 | |
DCM-MeOH | 0.895 | 0.584 | |
Raman | FTIR Mean | 0.755 | 0.576 |
Hexane | 0.878 | 0.386 | |
MeOH | 0.872 | 0.593 | |
DCM-MeOH | 0.898 | 0.599 | |
Raman Mean | 0.884 | 0.558 |
Raman Data | ||||
---|---|---|---|---|
Methanol | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.820 ± 0.008 | 0.485 ± 0.105 | 5.48 × 10−6 | Lube Preferred |
W Cotton Pur | 0.846 ± 0.008 | 0.778 ± 0.013 | 0.021 | Lube Preferred |
W Foam 5571 | 0.702 ± 0.055 | 0.611 ± 0.095 | 0.254 | Insignificant |
W Foam 5621 | 0.775 ± 0.019 | 0.662 ± 0.034 | 0.015 | Lube Preferred |
W Poly CH | 0.837 ± 0.013 | 0.551 ± 0.029 | 4.67 × 10−10 | Lube Preferred |
W Poly Pur | 0.851 ± 0.009 | 0.838 ± 0.011 | 0.651 | Insignificant |
W Rayon Mck | 0.836 ± 0.008 | 0.406 ± 0.231 | 6.89 × 10−6 | Lube Preferred |
W Rayon Pur | 0.837 ± 0.009 | 0.586 ± 0.026 | 6.29 × 10−9 | Lube Preferred |
C Cotton McK | 0.952 ± 0.001 | 0.594 ± 0.142 | 1.40 × 10−5 | Lube Preferred |
C Cotton Pur | 0.921 ± 0.012 | 0.712 ± 0.038 | 2.45 × 10−7 | Lube Preferred |
C Foam 5571 | 0.672 ± 0.053 | 0.550 ± 0.104 | 0.133 | Insignificant |
C Foam 5621 | 0.773 ± 0.063 | 0.652 ± 0.066 | 0.105 | Insignificant |
C Poly CH | 0.981 ± 0.001 | 0.601 ± 0.053 | 1.13 × 10−11 | Lube Preferred |
C Poly Pur | 0.837 ± 0.016 | 0.768 ± 0.021 | 0.086 | Insignificant |
C Rayon Mck | 0.892 ± 0.005 | 0.468 ± 0.240 | 1.02 × 10−5 | Lube Preferred |
C Rayon Pur | 0.895 ± 0.007 | 0.676 ± 0.063 | 0.001 | Lube Preferred |
Hexane | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.897 ± 0.006 | 0.872 ± 0.006 | 0.293 | Insignificant |
W Cotton Pur | 0.785 ± 0.020 | 0.679 ± 0.115 | 0.141 | Insignificant |
W Foam 5571 | 0.794 ± 0.021 | 0.954 ± 0.002 | 0.001 | Swab Preferred |
W Foam 5621 | 0.522 ± 0.028 | 0.754 ± 0.048 | 0.001 | Swab Preferred |
W Poly CH | 0.793 ± 0.022 | 0.139 ± 0.013 | 6.95 × 10−16 | Lube Preferred |
W Poly Pur | 0.818 ± 0.024 | 0.891 ± 0.01 | 0.091 | Insignificant |
W Rayon Mck | 0.522 ± 0.028 | 0.542 ± 0.112 | 0.772 | Insignificant |
W Rayon Pur | 0.788 ± 0.025 | 0.684 ± 0.050 | 0.067 | Insignificant |
C Cotton McK | 0.794 ± 0.024 | 0.909 ± 0.003 | 0.007 | Insignificant |
C Cotton Pur | 0.924 ± 0.001 | 0.723 ± 0.115 | 0.003 | Lube Preferred |
C Foam 5571 | 0.947 ± 0.001 | 0.965 ± 0.001 | 0.008 | Swab Preferred |
C Foam 5621 | 0.952 ± 0.001 | 0.410 ± 0.075 | 1.04 × 10−11 | Lube Preferred |
C Poly CH | 0.769 ± 0.060 | 0.189 ± 0.090 | 2.33 × 10−9 | Lube Preferred |
C Poly Pur | 0.844 ± 0.061 | 0.827 ± 0.058 | 0.82 | Insignificant |
C Rayon Mck | 0.952 ± 0.001 | 0.467 ± 0.070 | 6.41 × 10−11 | Lube Preferred |
C Rayon Pur | 0.460 ± 0.084 | 0.508 ± 0.142 | 0.625 | Insignificant |
DCM/MeOH | ||||
Sample | ELR v. ELS | EBR v. ELS | p-Value | Determination |
W Cotton McK | 0.620 ± 0.134 | 0.498 ± 0.123 | 0.369 | Insignificant |
W Cotton Pur | 0.882 ± 0.003 | 0.585 ± 0.007 | 5.28 × 10−17 | Lube Preferred |
W Foam 5571 | 0.885 ± 0.004 | 0.679 ± 0.085 | 0.001 | Lube Preferred |
W Foam 5621 | 0.902 ± 0.007 | 0.872 ± 0.004 | 0.245 | Insignificant |
W Poly CH | 0.910 ± 0.005 | 0.693 ± 0.032 | 8.58 × 10−6 | Lube Preferred |
W Poly Pur | 0.906 ± 0.005 | 0.295 ± 0.259 | 3.08 × 10−8 | Lube Preferred |
W Rayon Mck | 0.811 ± 0.038 | 0.532 ± 0.068 | 9.36 × 10−5 | Lube Preferred |
W Rayon Pur | 0.869 ± 0.020 | 0.588 ± 0.036 | 4.22 × 10−7 | Lube Preferred |
C Cotton McK | 0.986 ± 0.001 | 0.804 ± 0.091 | 0.001 | Lube Preferred |
C Cotton Pur | 0.786 ± 0.099 | 0.714 ± 0.089 | 0.437 | Insignificant |
C Foam 5571 | 0.790 ± 0.046 | 0.611 ± 0.86 | 0.009 | Lube Preferred |
C Foam 5621 | 0.937 ± 0.002 | 0.894 ± 0.004 | 0.003 | Lube Preferred |
C Poly CH | 0.979 ± 0.001 | 0.751 ± 0.032 | 5.79 × 10−9 | Lube Preferred |
C Poly Pur | 0.986 ± 0.001 | 0.126 ± 0.360 | 3.81 × 10−10 | Lube Preferred |
C Rayon Mck | 0.739 ± 0.107 | 0.593 ± 0.083 | 0.155 | Insignificant |
C Rayon Pur | 0.837 ± 0.038 | 0.632 ± 0.047 | 0.002 | Lube Preferred |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, S.J.; Thomas, S.; Flynn, N.; Bridge, C. Chemical Analysis of Sexual Lubricant Residue: A Comparison of Medical Examination Swabs Analyzed Using Spectroscopic Techniques. Forensic Sci. 2023, 3, 620-637. https://doi.org/10.3390/forensicsci3040045
Best SJ, Thomas S, Flynn N, Bridge C. Chemical Analysis of Sexual Lubricant Residue: A Comparison of Medical Examination Swabs Analyzed Using Spectroscopic Techniques. Forensic Sciences. 2023; 3(4):620-637. https://doi.org/10.3390/forensicsci3040045
Chicago/Turabian StyleBest, Safiya J., Santana Thomas, Nancy Flynn, and Candice Bridge. 2023. "Chemical Analysis of Sexual Lubricant Residue: A Comparison of Medical Examination Swabs Analyzed Using Spectroscopic Techniques" Forensic Sciences 3, no. 4: 620-637. https://doi.org/10.3390/forensicsci3040045
APA StyleBest, S. J., Thomas, S., Flynn, N., & Bridge, C. (2023). Chemical Analysis of Sexual Lubricant Residue: A Comparison of Medical Examination Swabs Analyzed Using Spectroscopic Techniques. Forensic Sciences, 3(4), 620-637. https://doi.org/10.3390/forensicsci3040045