Next Article in Journal
Taxonomic Revision of Pygmy Devil Genera Almacris, Ginixistra, Tegotettix, and Xistra, with Comments on Xistrella (Orthoptera: Tetrigidae)
Previous Article in Journal
Morphological and Mitochondrial Evidence Supporting New Records of Leatherleaf Slugs (Gastropoda: Veronicellidae) in Mexico
Previous Article in Special Issue
Cyclotella or Discostella? An Evaluation of the Morphological and Molecular Evidence Regarding the Generic Placement of a Centric Diatom from Eastern Asia and the Creation of Discocyclus gen. nov.
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Systematic Evaluation of Sea Stars of the Genus Heliaster from the Southeastern Pacific and Redescription of Heliaster helianthus

by
Jennifer Catalán
1,2,*,
Christian M. Ibáñez
1,*,
Sergio A. Carrasco
3,
Javier Sellanes
4,
Angie Díaz
5,6 and
M. Cecilia Pardo-Gandarillas
7,*
1
One Health Institute, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
2
Programa de Magíster en Recursos Naturales, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370251, Chile
3
Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepcion 4070409, Chile
4
Departamento de Biología Marina, Centro Ecology and Sustainable Management of Oceanic Islands, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo 1781421, Chile
5
Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (MI-BASE), Santiago 7800003, Chile
6
Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepcion 4070409, Chile
7
Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Facultad de Ciencias Médicas, Universidad Bernardo O’Higgins, Avenida Viel 1497, Santiago 8370993, Chile
*
Authors to whom correspondence should be addressed.
Taxonomy 2025, 5(4), 59; https://doi.org/10.3390/taxonomy5040059
Submission received: 21 August 2025 / Revised: 14 October 2025 / Accepted: 15 October 2025 / Published: 17 October 2025
(This article belongs to the Collection Taxonomy on Aquatic Life (TAL))

Abstract

Heliaster has long been considered to comprise seven nominal species of starfish distributed across the Eastern Pacific, from Baja California (Mexico) southward to central Chile. Along the southeastern Pacific coast, three taxa have been traditionally recognized: H. helianthus (Paita, northern Peru, to Concepción, central-southern Chile), H. polybrachius (Mexico to Perú), and H. canopus (Juan Fernández Archipelago and Desventuradas Islands). However, extensive morphological overlap among these forms has cast doubt on the validity of H. canopus, with some authors treating it as a synonym for H. helianthus. To clarify this ambiguity, we applied an integrative framework combining detailed morphometrics, phylogenetic inference from mitochondrial (COI) and nuclear (H3) markers, and two species delimitation approaches (bPTP and ASAP). Our sampling spanned Peru, continental Chile, and the oceanic islands of Juan Fernández and Desventuradas. Variation in ray number and relative arm length among H. helianthus, H. canopus, and H. polybrachius proved allometric, scaling strongly with body diameter rather than indicating discrete species boundaries. Molecular data show >95% sequence similarity across all nominal taxa and recover a single, well-supported clade; bPTP and ASAP likewise support one Heliaster lineage throughout the southeastern Pacific, corresponding to H. helianthus. Accordingly, we redescribe H. helianthus, designate a neotype from Quintay, Chile, and formally synonymize H. canopus and H. polybrachius under H. helianthus. Our results indicate that a single species spans the Eastern Pacific from Ecuador and Peru to central-southern Chile, including offshore islands, underscoring the value of integrative taxonomy for robust delimitation and accurate biodiversity assessments in marine invertebrates.

Graphical Abstract

1. Introduction

The family Heliasteridae is represented by two genera: Heliaster Gray, 1840, which ranges from Baja California (Mexico) to central Chile, and Labidiaster Lütken, 1871, found from southern Chile to Antarctica [1]. Within Heliaster, seven nominal species have been described across the Eastern Pacific, largely distinguished by geographic distribution. These include H. kubiniji and H. microbrachius both described by Xatus, 1860 in the waters off Mexico; H. solaris A. H. Clark, 1920 and H. cumingi (Gray, 1840) in the Galapagos Islands; H. polybrachius H. L. Clark, 1907 and H. helianthus (Lamarck, 1816) along the coasts of Peru and Chile; and H. canopus (Valenciennes (MS) via Perrier 1875) restricted to the Juan Fernández Archipelago [2,3,4] (Table 1). However, the validity of several Heliaster species has long been debated. Early researchers noted that key diagnostic features, primarily the number of rays (arms) and overall body size, exhibited substantial variation and frequent overlap among the described forms. In fact, Clark [3] observed continuous gradation in ray count and body diameter rather than clear-cut differences. In addition, modern studies have confirmed that ray number increases with body size (allometry) rather than indicating discrete species [5]. This allometric correlation undermines the taxonomic value of ray count and size alone. Notably, H. canopus, the smaller form endemic to the Juan Fernández Archipelago and Desventurada Islands, was suspected even over a century ago to represent juvenile or small-bodied individuals of H. helianthus rather than a distinct species [6]. Diagnostic features such as ray count and the percentage of arm length free from the central disc (“free arms”) also vary continuously with body size [3]. This variability has led to inconsistent use of morphological thresholds across studies, with overlapping values for key traits (Table 1). Consequently, conflicting geographic assignments have been proposed for several forms, further complicating species boundaries and distributional records [2,3,4].
Taxonomic challenges in Heliaster stem largely from the brevity and vagueness of the original species descriptions. Asterias helianthus, the name initially assigned by Lamarck [8] to what is now H. helianthus, was described in only a few lines: “Sea star with a rounded disc and numerous radiating arms; the ventral surface is concave. The aboral surface is papillose and echinate, bearing small spines and papillae arranged in series. Dorsal spines are short and scattered” (translated from Latin). Additional details, translated from the original French, characterize the species as “one of the most peculiar and curious Asterias; it is orbicular, convex above, concave below, and divided in its circumference into thirty to thirty-six narrow rays, close together, arched, sometimes a little curled, and covered with small papillae arranged in longitudinal rows. Its width is 14 to 16 cm”. These concise and qualitative descriptions offer insufficient diagnostic resolution to reliably distinguish H. helianthus from other sympatric “sun star” species. Consequently, later naturalists often lumped or split specimens based on superficial resemblance to Lamarck’s type concept, perpetuating taxonomic ambiguity and frequent misidentifications within the genus. Perrier [6] explicitly questioned whether the “slight differences” used to delineate multiple Heliaster species were taxonomically meaningful. Given the pronounced morphological variability observed in Heliaster and their geographically restricted distribution, primarily the Galápagos, Juan Fernández/Desventuradas Islands, and the western coast of the Americas, Perrier speculated that these named forms might represent mere varieties of a single polymorphic species. His skepticism was particularly prescient in suggesting that Heliaster canopus could simply be a juvenile or small-bodied variant of H. helianthus, a hypothesis that aligns with modern findings and allometric interpretations of morphological variation in the genus.
The taxonomic ambiguity within Heliaster is particularly pronounced in Chile’s oceanic islands. Historical literature and museum records report the presence of both H. helianthus and H. canopus in the Juan Fernández Archipelago (JFA) and the Desventuradas Islands (DI) [9,10]. However, field surveys, both qualitative and quantitative, have consistently detected only H. canopus in the JFA [11,12]. Additionally, the Museo Nacional de Historia Natural de Chile (MNHNCL) catalogs include H. helianthus, H. canopus, and H. polybrachius from both island groups [10], underscoring persistent inconsistencies in species identifications within the genus.
Biogeographically, the JFA and DI form a single marine ecoregion characterized by exceptionally high levels of endemism [13]. Many marine species in these islands have evolved in isolation, resulting in some of the highest proportions of endemic fishes and invertebrates globally [14]. Nevertheless, recent molecular studies have revealed that several taxa, particularly among fish and mollusks, previously considered endemic to these islands, are genetically conspecific with their mainland counterparts [15,16]. Despite exhibiting morphological or coloration differences, DNA evidence indicates that these forms do not represent distinct species but rather belong to a broader continental lineage. This lack of genetic divergence may be explained by the relatively recent geological origin of islands. Santa Clara, the oldest island in the JFA, is approximately 5.8 My old, while the others are considerably younger [17]. Marine colonization likely occurred during the Pliocene-Pleistocene, a timeframe insufficient for lineages such as Heliaster to evolve reproductive isolation (e.g., [16]). Consequently, it is plausible that the insular form H. canopus has not been isolated long enough from the mainland H. helianthus to warrant recognition as a separate species. Emerging evidence from integrative taxonomic studies supports the hypothesis that Heliaster helianthus constitutes a single, widespread species distributed throughout the Eastern Pacific, from the coasts of Ecuador, Peru, and Chile to their oceanic islands. This study embraces that perspective and seeks to resolve the taxonomy of Heliaster by integrating morphological and genetic evidence, ultimately testing the validity of nominal species previously considered distinct.
The study aims to resolve the persistent taxonomic uncertainty surrounding nominal Heliaster species in the Southeastern Pacific, including the Juan Fernández Archipelago and the Desventuradas Islands, by applying, for the first time, an integrative approach that combines morphometric analyses, phylogenetic inference (COI and H3 markers), and molecular species delimitation techniques.

2. Materials and Methods

2.1. Sampling

A total of 53 sea stars belonging to the genus Heliaster were collected from the Pacific Ocean between 2009 and 2025, encompassing sites along the coasts of Chile and Peru, as well as Robinson Crusoe Island (JFA) and San Ambrosio Island (DI) (see Figure 1 and Table A1). In addition to Heliaster, specimens of other sea star genera, Patiria, Parvulastra, Stichaster, Odontaster, and Granaster, were collected from Antarctica, continental Chile, and the JFA (see Table A1). All specimens were preserved in 95% ethyl alcohol for subsequent morphological and genetic analysis in the laboratory (Table A1 and Table A2).

2.2. Material Examined

In the present study, 11 individuals of H. canopus were collected: one from San Ambrosio Island (SCBUCN–7749) and ten from the Juan Fernández Archipelago (Chile). Additionally, four specimens of H. helianthus were collected from continental Chile, and one specimen of H. polybrachius was obtained from Pucusana (Peru) (Table A1). Complementing this field collection, 110 Heliaster specimens housed in the invertebrate collection of the National Museum of Natural History of Chile (MNHNCL) were examined and measured (Table A3).
Given the loss of Lamarck’s original Asterias helianthus type specimens, we designate an adult specimen from Quintay, Chile (33°10′58″ S, 71°41′06″ W) as the neotype of Heliaster helianthus. This specimen has been formally deposited in the Museo Nacional de Historia Natural de Chile (MNHNCL EQUI-17521).

2.3. Comparative Material Examined

We examined seven specimens from the invertebrate collection of the Musée National D’Histoire Naturelle de France (MNHN), including: Heliaster canopus (See Figure 2c,d), type material: two syntypes from the Juan Fernández Archipelago (Collection Hombron & Jacquinot 1841; MNHN-IE-2014-424-01 & MNH-IE-2014-424-02); Heliaster canopus: Chile, Collection Cotteau G. 1894 (MNH-IE-2017-1389); Heliaster helianthus (See Figure 2a,b): Caldera (Chile), Collection envoi de M. Agassiz 1864 (MNH-IE-2017-669); Heliaster cuminingi: Peru (MNH-IE-2017-1831); Heliaster kubiniji: Acapulco (Mexico), Collection envoi de M. Agassiz 1864 (MNH-IE-2017-1350); Heliaster microbrachius: California (EEUU) (MNH-IE-2017-665). It was also examined six specimens from the invertebrate zoology collection of the National Museum of the American Latino, Smithsonian Institution: Heliaster canopus: Juan Fernández Archipelago (Chile), collected by Dr. Waldo L. Schmitt 1926 (USNM-E3771); Heliaster helianthus: Salaverry (Peru), collected by Dr. Waldo L. Schmitt 1926 (USNM-E3554); Heliaster kubiniji: USNM-EO32619; Heliaster microbrachius: Collected by Dr. Waldo L. Schmitt 1926 (USNM-EO32624); Heliaster microbrachius: Baja California (Mexico), collected by the United States Fish Commission in 1911 (USNM-2017); Heliaster microbrachius (holotype): San Jose Island (Panama), collected by A. Wetmore & J. P. Morrison 1944 (USNM-E3554) (Table A4).

2.4. Morphological Measurements

For each specimen, whether collected in the field or sourced from a museum collection, we recorded the total number of rays and measured the length of each ray in millimeters. We calculated the major radius (R), defined as the distance from the center of the oral disc to the tip of the longest ray, and the minor radius (r), defined as the distance from the disc center to its outer edge, and the percentage of free ray was calculated as (R − r/R) × 100. The maximum body diameter (mm) was recorded for each individual and used as a proxy for body size (Table A2 and Table A3).

2.5. Molecular Protocol for Gene Amplification and Sequencing

DNA was extracted from the ambulacral feet of each specimen following the protocol described by Haye et al. [18], based on the saline extraction method of Aljanabi and Martinez [19]. DNA concentration and purity were measured with a spectrometer (Nanodrop Lite), and DNA quality was verified by electrophoresis on a 1.5% agarose gel.
Partial sequences of the mitochondrial Cytochrome Oxidase I (COI) and nuclear Histone 3 (H3) genes were amplified using echinoderm-specific primers (COI: [20], H3: [21]). Polymerase Chain Reaction (PCR) mixture included 1.5 mM MgCl2, 1× reaction Buffer (50 mM KCl, 10 mM Tris-HCl, pH 8.0), 0.22 mM dNTPs, 0.4 pmol/μL of each primer, 0.1 U/μL Taq DNA polymerase, and 3 ng/μL template DNA [18].
Thermal cycling conditions varied by region: COI: Initial denaturation at 94 °C for 10 min, followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 50 °C for 45 s, and extension at 72 °C for 1 min, with a final extension at 72 °C for 10 min. H3: Initial denaturation at 94 °C for 3 min, followed by 35 cycles at 94 °C for 30 s, annealing at 50 °C for 45 s, and extension at 72 °C for 1 min, with a final extension at 72 °C for 10 min. PCR products were sequenced bidirectionally by Macrogen Inc. (Seoul, Republic of Korea). Sequence editing and alignment were performed manually using ProSeq v.2.9 software [22].

2.6. Phylogenetic Analysis

Phylogenetic reconstructions were performed using Maximum likelihood (ML) and Bayesian inference (BI) approaches, based on a partitioned dataset comprising COI and H3 gene sequences, each assigned distinct substitution models. ML analyses were performed using the IQ-TREE online server [23], employing a hill-climbing Nearest Neighbor Interchange (NNI) search strategy [24]. Substitution models were selected using ModelFinder [25], incorporating codon-position partitioning. Node support was evaluated using 1000 ultrafast bootstrap replicates [26]. All trees were rooted with Ophiura robusta (Ayres, 1852) as the outgroup (Table 2), based on its well-supported phylogenetic position as sister to Asteroidea [1].
Bayesian analyses were performed in MrBayes v.3.2 [27], using partition-specific models identified by ModelFinder (COI: GTR+G+I, H3: K2+G). Each Markov Chain Monte Carlo (MCMC) run consisted of four chains over ten million generations, with sampling performed every 1000 generations. Convergence and effective sample size (ESS) were assessed across independent runs using Tracer v.1.5 [28]. The initial 1000 trees from each run were discarded as burn-in, and a majority-rule consensus tree was constructed. The final topology was visualized and edited in FigTree v.1.4 [29].

2.7. Species Delimitation

Species boundaries within the genus Heliaster were assessed using two complementary approaches: (1) the Bayesian Poisson Tree model (bPTP, [30]), applied to the phylogenetic tree generated by IQ-TREE, and (2) the Assemble Species by Automatic Partitioning method (ASAP, [31]), based on JC69 genetic distance for both COI and H3 gene sequences.

3. Results

3.1. Taxonomic Account

Asteroidea de Blainville, 1830;
Forcipulatida Perrier, 1884;
Heliasteridae Viguier, 1879;
Heliaster Gray, 1840;
Heliaster helianthus (Lamarck, 1816).
Synonymized names
Asterias helianthus Lamarck, 1816;
Stellonia helianthus (Agassiz, 1835);
Asteracanthion helianthus (Müller & Troschel, 1842);
Heliaster canopus (Valensiennes (MS) in Perrier, 1875)—in this study
Heliaster polybrachius H.L. Clark, 1907—in this study.
Type locality: Unknown.
Type material: Lost.

3.2. New Diagnosis

Large disc (>150 mm). Adult specimens (>100 mm) with 22–48 rays. The percentage of free arms ranged from 22% to 54%. Abactinal plate ridges bearing 8–15 robust spinelets. Marginal plates are indistinguishable from actinal plates. Adambulacral plates with nine or ten spines, grading smaller distally. Three rows of spines along the dorsal surface of each ray.

3.3. Redescription

Large sea star with a maximum diameter of 274 mm; disc broad and relatively long, with robust rays. Larger specimens (>100 mm) with 22–48 rays. The percentage of free arms ranged from 22% to 54% in larger specimens. The designated neotype (R = 91.72 mm, r = 64.84 mm, percentage of free arm: 32.9%; Figure 3, Table A2) exhibits a densely spined abactinal surface (Figure 3a,b,e,f,i,j). Three prominent zigzag rows of white spines are aligned along each ray (Figure 3b,f,j). The madreporite is positioned closer to the anus than to the disc edge; small and oval-shaped, with irregularly radiating spinose ridges (Figure 3a,e,i). Each ray has numerous ambulacral furrows with large lateral white spines (Figure 3). Live specimens exhibit a striking black and white coloration with irregular maroon blotches and speckles abactinally. Spines and madreporite are yellowish to whitish (Figure 3a,e,i).

3.4. Distribution

Based on a synthesis of published literature, museum records, and newly collected specimens, the geographic distribution of Heliaster helianthus extends from Ecuador (2° S) to Concepción, Chile (37° S). Notably, the species exhibits a marked decline in frequency towards the southernmost extent of its range (Figure 4).

3.5. Habitat

This species inhabits the mid to high intertidal zone of rocky shores, favoring wave-exposed and semi-exposed environments [32], and extends into the shallow subtidal, typically at depths less than 10 m (Figure 5; [4]). Ontogenetic habitat shifts have been documented: juveniles are found in sheltered microhabitats such as boulder fields and crevices within the upper intertidal, whereas larger individuals tend to inhabit deeper areas subject to stronger wave action [32].

3.6. Neotype Designation and Type Locality

Heliaster helianthus (Lamarck, 1816) lacks original name-bearing type material, and the protologue does not specify a precise type locality. To stabilize the taxonomic identity of this species, in this study, we designate a neotype in accordance with Article 75.3 of the International Code of Zoological Nomenclature. Available online: https://www.iczn.org/the-code/the-code-online/ (accessed on 13 October 2025).
Neotype. MNHNCL EQUI-17521, collected at Quintay, Valparaíso Region, Chile (33°10′58″ S, 71°41′06″ W; Figure 6), and deposited in the Marine Invertebrate Zoology collection of the Museo Nacional de Historia Natural de Chile (MNHNCL). By this act, the type locality of H. helianthus is restricted to Quintay, Chile. This locality lies within the confirmed native range of the species based on historical and contemporary records.
Lamarck [8] diagnosis, rounded disc; numerous, narrow radiating arms (30–36); a concave oral surface; aboral surface with small papillae and spines arranged in rows, is consistent with the neotype, which exhibits a broad disc, 35 arms, a papillose and echinate aboral surface, and short dorsal spines arranged longitudinally (see Section 3.3). Its measurements and coloration fall within the observed variation of the species and match subsequent taxonomic accounts [3].
Compliance with ICZN Art. 75-3: Purpose and need (75.3.1): the neotype is designated to resolve long-standing taxonomic confusion and stabilize usage of Clark, 1907 H. helianthus in the southeastern Pacific. Diagnosis/definition (75.3.2): the taxon is defined by an explicit diagnosis and comparative morphology consistent with the protologue. Consistency with original material (75.3.3): the neotype conforms to the characters given by Lamarck (1816) and subsequent redescriptions. Loss/unavailability of original material (75.3.4): no original name-bearing type is extant or traceable. Type locality (75.3.5): the neotype originates as near as practicable to the historical range, with this designation, the type locality is fixed to Quintay, Chile. Clarification of status (75.3.6): the designation resolves competing usages arising from historical synonymy among nominal Heliaster taxa. Repository (75.3.7): the neotype is housed in a recognized, publicly accessible museum (MNHNCL), ensuring permanent preservation and availability for study. This neotype designation provides a definitive reference for the application of the name Heliaster helianthus, thereby stabilizing nomenclature and resolving confusion among nominal Southeastern Pacific Heliaster species.

3.7. Morphological Variability

Morphological variation among Heliaster species is associated with both specimen diameter and habitat. As shown in Figure 7, the number of rays, ray length (largest and smallest radius), and proportion of free arms are positively correlated with specimen diameter (Figure 7A–D). Additionally, these traits vary across sampling localities. Most individuals of H. canopus and H. polybrachius from JFA and DI exhibit fewer rays (<30) and a lower proportion of free arms (<40%) compared to H. helianthus from the continent (Figure 7A,D). These interspecific differences suggest that both developmental constraints and environmental factors may shape arm morphology and regenerative capacity across habitats.

3.8. Phylogeny and Species Delimitation

Bayesian inference based on concatenated COI and H3 sequences, including both GenBank records and newly generated sequences, yielded a consensus tree with high posterior probability across most nodes (PP = 0.85–1.0). The resulting topology was congruent with that obtained from ML analysis using IQ-TREE, which exhibited strong bootstrap support (BS = 75–100) throughout (Figure 8). Both approaches (ML and BI) recovered a well-supported monophyletic clade comprising H. canopus, H. polybrachius, and H. helianthus (BS = 95, PP = 1.0; Figure 8).
Species delimitation analyses (bPTP and ASAP) yielded broadly congruent partitions of the broader asteroidean dataset, recovering 6 and 8 candidate species overall, six of which were represented by multiple individuals (Figure 8). Specifically, bPTP method delimited seven entities with strong support (PP = 0.75–1.0), largely mirroring the groupings recovered by ASAP method (Figure 8). ASAP, based on JC69 genetic distances for COI and H3 separately, identified 6–7 species depending on the locus, with only minor discrepancies involving Granaster and Stichaster species (Figure 8). These counts refer to the intergeneric dataset, not to Heliaster per se. All methods grouped a single Southeastern Pacific Heliaster lineage corresponding to H. helianthus.

4. Discussion

This study supports the idea that several nominal multiarmed sea stars from the Southeastern Pacific are conspecific and represent a single taxonomic entity: Heliaster helianthus. Integrative evidence from morphology and phylogeny indicates that H. helianthus is the sole representative of the genus at these latitudes, with a distribution encompassing the coasts of Peru and Chile, as well as the Chilean Oceanic Islands, including the Juan Fernández Archipelago and the Desventuradas Islands.

4.1. Morphology

Traditional morphometric traits in asteroids often provide limited discriminatory power, underscoring the need for improved diagnoses. In our study, morphological features such as ray number and relative arm length scale strongly with overall body size (Figure 7), rendering them unreliable for distinguishing Heliaster species in the Southeastern Pacific. The positive association between ray number and diameter corroborates previous observations [3,5]. On this basis, Perrier [6] and Clark [4] proposed that H. canopus may represent a juvenile form of H. helianthus.
Our data are consistent with the hypothesis that H. helianthus from the Juan Fernández Archipelago (JFA) attains reproductive maturity at smaller sizes than conspecifics from continental Peru and Chile (mean diameters ~25 mm vs. ~35 mm). This pattern may reflect developmental plasticity and/or environmental differences (e.g., resource regimens, temperature, hydrodynamics) rather than species-level divergence, a phenomenon documented in other echinoderms and marine invertebrates inhabiting heterogeneous environments. This inference remains tentative and would benefit from direct evidence (e.g., gonad staging/histology, size at maturity curves) before being treated as a life-history generalization.
Among the variables analyzed, the rows of spines along the dorsal surface of each ray are the most important trait to differentiate Heliaster species. The percentage of free rays, interpreted in a geographic context, emerged as informative morphological trait. Nevertheless, it appears to capture within-species phenotypic structure rather than discrete species boundaries. Examination of type specimens (MNHN) and additional museum material (SM; MNHNCL) confirmed substantial size-associated variation in this genus (Figure 7, Table A3), supporting the conclusion that several previously named forms are junior synonyms of H. helianthus.
Based on the morphological congruence between the neotype and Lamarck’s original (albeit brief) description, we treat H. canopus and H. polybrachius as junior synonyms of H. helianthus. Size differences between continental and insular populations are consistent with the “Island Rule” patterns in marine invertebrates [33], but we frame this as a working hypothesis, not as a taxonomic conclusion, pending targeted tests that integrate morphology, environment, and demography.

4.2. Species Delimitation and Phylogeny

All lines of evidence support the recognition of a single species encompassing the nominal Heliaster taxa from the Southeastern Pacific. Species delimitation analyses (bPTP and ASAP) and the phylogenetic results are fully consistent. Although the intergeneric Asteroidea dataset yields 6–8 candidate species overall, within Heliaster, all analyses converge on one cohesive lineage corresponding to H. helianthus.
In the phylogeny, Heliaster (family Heliasteridae) is recovered as sister to Stichasteridae Perrier, 1885, specifically to a clade comprising Granaster and Stichaster. This relationship is congruent with previous studies [1,34] and reinforces the close evolutionary affinity between Heliaster and Stichasteridae. Although Heliasteridae includes two genera (Heliaster and Labidiaster), our sampling targeted Heliaster only. Incorporating Labidiaster will be essential to fully resolve intrafamilial relationships. Notably, prior multilocus phylogenies (COI, 12S, 16S, 18S, 28S, and H3) consistently recover both genera within a well-supported monophyletic Heliasteridae [1,34].
The delimitation results indicated that H. canoups and H. polybrachius are junior synonyms of H. helianthus, echoing Clark [4] taxonomic conclusions. Because material was unavailable, we could not include H. cumingi/H. solaris (Galápagos Islands) or H. kubiniji/H. microbrachius (North Pacific). Future research should determine whether these names are conspecific with H. helianthus or represent distinct species, using an integrative framework that couples dense geographic sampling with morphology explicitly accounting for allometry and independent genetic markers. Clark [4] hypothesized that H. cumingi could be a synonym of H. helianthus, if corroborated, the range of H. helianthus would extend to the Galápagos Islands.

4.3. Distribution

Our study provides an updated overview of the geographical distribution of H. helianthus along the Southeastern Pacific. Based on original collections, museum specimens, and literature, we confirm its presence from Ecuador to South-Central Chile (Figure 4), including Chile’s oceanic Islands (Juan Fernández Archipelago and Desventuradas Islands).
The wide geographic range of H. helianthus is particularly notable given the limited dispersal potential typically associated with benthic echinoderms. Although larval development in Heliaster has not been described in full detail, Heliaster species are reported to possess planktotrophic larvae with a planktonic duration exceeding two to three months before metamorphosis [35]. Such durations could facilitate long-distance dispersal via the Humboldt Current System, a major oceanographic feature that flows northward along the Peru and Chile coasts and can connect with oceanic islands through mesoscale eddies and upwelling filaments [36].
Supporting this inference, Haye et al. [18] detected no significant population structure in H. helianthus along the Chilean coast, suggesting high gene flow and limited isolation by distance. The morphological variation observed between island and continental populations, especially in body size, is therefore best interpreted as local adaptation rather than evidence of cryptic speciation. Together, these lines of evidence indicate a single, highly connected species with near-continuous distribution (in line with Perrier’s hypothesis), despite substantial geographic distances and ecological gradients.

4.4. Biogeographic and Evolutionary Implications

The broad geographic distribution of H. helianthus across both continental margins and remote islands provides key insights into Southeastern Pacific biogeography. Its apparent lack of genetic structure [18], coupled with extended planktonic larval duration [35], strongly suggests high dispersal capacity and/or historical connectivity. This aligns with studies of other regional taxa [15,16] that infer colonization of oceanic islands such as JFA and DI during the Pliocene–Pleistocene, facilitated by transient oceanographic connections, suggesting that the isolation has been recent or intermittent.
From an evolutionary perspective, our results highlight that morphological differentiation in insular populations does not necessarily indicate speciation. The treatment of H. canopus and H. polybrachius as junior synonyms of H. helianthus illustrates a broader pattern: insular populations may retain phenotypic distinctions driven by environmental differences or growth allometry while remaining genetically and taxonomically conspecific. This cautions against inferring species limits from morphology alone and emphasizes the value of integrative approaches in marine taxonomy.

5. Conclusions

Our results show that the nominal multiarmed sea stars of the southeastern Pacific represent a single taxonomic entity: Heliaster helianthus. Concordant morphological and phylogenetic evidence indicate that H. helianthus is the only Heliaster inhabiting this region. We redescribe H. helianthus, designate a neotype from Quintay (Chile), and formally synonymize H. canopus and H. polybrachius under H. helianthus. Its broad distribution, from northern Peru to south-central Chile, including the Juan Fernandez Archipelago and the Desventuradas Islands, likely reflects a combination of high dispersal potential and historical connectivity. More broadly, this study underscores the value of integrative taxonomic approaches in avoiding taxonomic inflation and in clarifying the evolutionary and biogeographic dynamics of marine invertebrates.

Author Contributions

Conceptualization, J.C. and C.M.I.; methodology, J.C.; formal analysis, J.C. and C.M.I.; data curation, J.C. and A.D.; writing—original draft preparation, J.C., A.D., S.A.C., J.S., C.M.I. and M.C.P.-G.; writing—review and editing, J.C., A.D., S.A.C., J.S., C.M.I. and M.C.P.-G. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Proyecto regular Universidad Andres Bello REG-UNAB DI-13–18 to CI, and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), funding number FONDECYT 1241836, to SC. Additionally, this research was funded by Agencia Nacional de Investigación y Desarrollo de Chile (ANID), funding number Anillo ANID ATE 220044, and by ANID Millennium Science Initiative Program, funding number ICN2021_002.

Data Availability Statement

Sequences used in this study are deposited in GenBank (Table A1).

Acknowledgments

We sincerely thank the staff of MNHN and Andrea Martínez from MNHNCL for their invaluable assistance with specimen collection. Special thanks to Felipe Torres, Nicol Zuñiga-Cueto, and Cristian Miranda for their dedicated support during sampling.

Conflicts of Interest

The authors declare no conflicts of interest.

Appendix A

Table A1. Specimens collected in this study including sampling year, locality and coordinates. *: Neotype.
Table A1. Specimens collected in this study including sampling year, locality and coordinates. *: Neotype.
SpeciesCodeLocalityCollectionLatitudeLongitudeCOIH3
Heliaster polybrachiusHPPP01Pucusana, Perú2013−12.4799−76.8009PX112071PX136096
Heliaster canopusHCID01San ambrosio Island2018−26.3380−79.8732PX112064PX136089
Heliaster canopusHCJF01Robinson Crusoe Island2009−33.6213−78.8453
Heliaster canopusHCJF02Robinson Crusoe Island2009−33.6361−78.8301PX112065PX136090
Heliaster canopusHCJF04Robinson Crusoe Island2009−33.6420−78.8247PX112066PX136091
Heliaster canopusHCJF05Robinson Crusoe Island2009−33.6420−78.8247PX112067PX136092
Heliaster canopusHCJF07Robinson Crusoe Island2009−33.6213−78.8453
Heliaster canopusHCJF08Robinson Crusoe Island2025−33.6405−78.8143
Heliaster canopusHCJF09Robinson Crusoe Island2025−33.6405−78.8143
Heliaster canopusHCJF10Robinson Crusoe Island2025−33.6405−78.8143
Heliaster canopusHCJF11Robinson Crusoe Island2025−33.6405−78.8143
Heliaster canopusHCJF12Robinson Crusoe Island2025−33.6405−78.8143
Heliaster canopusHCJF13Robinson Crusoe Island2025−33.6361−78.8301
Heliaster canopusHCJF14Robinson Crusoe Island2025−33.6420−78.8247
Heliaster canopusHCJF15Robinson Crusoe Island2025−33.6420−78.8247
Heliaster helianthusHHLP01Lobitos, Perú2014−4.4526−81.2891PX112069PX136094
Heliaster helianthusHHLP02Lobitos, Perú2014−4.4526−81.2891PX112070PX136095
Heliaster helianthusHHTI08Tres Islas, Iquique2014−20.3149−70.1383PX112073PX136098
Heliaster helianthusHHTI20Tres Islas, Iquique2014−20.3149−70.1383PX112074PX136099
Heliaster helianthusHHLM01Los Molles, Chile2025−32.2398−71.5111
Heliaster helianthusHHQT04Quintay, Chile2018−33.1911−71.7025PX112072PX136097
Heliaster helianthusMNHNCL EQUI-17521 *Quintay, Chile2022−33.1828−71.6856
Heliaster helianthusHHAL01Algarrobo, Chile2023−33.3580−71.6644
Heliaster helianthusHHET01El Caleuche, El Tabo2019−33.4567−71.6716PX112068PX136093
Heliaster helianthusHHET02El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET03El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET04El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET05El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET06El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET07El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET08El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET09El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET10El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET11El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET12El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET13El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET14El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET15El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET16El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET17El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET18El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET19El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET20El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET21El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET22El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET23El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET24El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET25El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET26El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHET27El Caleuche, El Tabo2025−33.4567−71.6716
Heliaster helianthusHHLC01Las Cruces, Chile2025−33.5005−71.6351
Heliaster helianthusHHLC02Las Cruces, Chile2025−33.5005−71.6351
Heliaster helianthusHHLB01La Boca, Chile2025−33.9197−71.8492
Stichaster striatusSSME 01Mejillones2013−23.0988−70.4601PX112084PX136109
Granaster nutrixGNBF01Bahía Fildes, Antártica2022−62.1995−58.9592
Granaster nutrixGNBF02Bahía Fildes, Antártica2022−62.1995−58.9592
Odontaster validusOVES01Escudero, Antártica2022−62.1995−58.9592PX112075PX136100
Odontaster validusOVES02Escudero, Antártica2022−62.1995−58.9592PX112076PX136101
Patiria chilensisPHB01Desembocadura, Biobio2020−36.8125−73.1749PX112082PX136107
Patiria chilensisPHQT01Quintay2018−33.1911−71.7025PX112083PX136108
Parvulastra calcarataPCJF01Robinson Crusoe Island2009−33.6361−78.8301PX112077PX136102
Parvulastra calcarataPCJF04Robinson Crusoe Island2009−33.6361−78.8301PX112078PX136103
Parvulastra calcarataPCJF06Robinson Crusoe Island2009−33.6361−78.8301PX112079PX136104
Parvulastra calcarataPCJFS1Robinson Crusoe Island2019−33.6308−78.8797PX112080PX136105
Parvulastra calcarataPCJFS2Robinson Crusoe Island2019−33.6308−78.8797PX112081PX136106
Table A2. Morphological measurement of field-collected Heliaster species. *: Neotype.
Table A2. Morphological measurement of field-collected Heliaster species. *: Neotype.
CodeSpeciesN° of RaysR (mm)r (mm)Free Rays (%)Maximum
Diameter (mm)
HHPP01H. polybrachius3037.2729.4520.9888.48
HCID01H. canopus1432.0014.7054.0656.70
HCJF01H. canopus2736.9521.9240.6874.84
HCJF02H. canopus2544.4625.2743.1685.27
HCJF08H. canopus2345.1317.2561.7878.02
HCJF09H. canopus2437.6919.3648.6365.01
HCJF10H. canopus2538.0621.9642.3075.18
HCJF11H. canopus2430.3311.4562.2559.30
HCJF12H. canopus2442.3924.6941.7682.48
HCJF13H. canopus2451.3626.2648.8795.86
HCJF14H. canopus2667.1640.0940.31128.95
HCJF15H. canopus2336.7419.0448.1871.26
HHME01H. helianthus1717.415.4868.5233.68
MNHNCL EQUI-17521 *H. helianthus3391.7261.5432.90170.93
HHLM01H. helianthus3592.8264.8430.14206.75
HHAL01H. helianthus48107.9375.0830.44213.56
HHET02H. helianthus3139.1523.0541.1284.70
HHET03H. helianthus3669.9044.0536.98134.10
HHET04H. helianthus3782.4555.0533.23156.20
HHET05H. helianthus3161.0043.0029.51126.00
HHET06H. helianthus3782.0058.0029.27172.01
HHET07H. helianthus3471.0046.0035.21145.10
HHET08H. helianthus316742.0037.31133.00
HHET09H. helianthus35145.0089.0038.62275.00
HHET10H. helianthus3694.0059.0037.23185.00
HHET11H. helianthus37147.0093.0036.73282.00
HHET12H. helianthus37113.0068.0039.82252.10
HHET13H. helianthus3985.0059.0030.59173.20
HHET14H. helianthus42101.0063.0037.62204.00
HHET15H. helianthus35106.0065.0038.68219.00
HHET16H. helianthus39106.0068.0035.85224.10
HHET17H. helianthus4091.0058.0036.26185.20
HHET18H. helianthus3681.0052.0035.80178.10
HHET19H. helianthus3792.0067.0027.17213.00
HHET20H. helianthus3681.0053.0034.57159.10
HHET21H. helianthus4094.0063.0032.98194.10
HHET22H. helianthus36116.0072.0037.93253.00
HHET23H. helianthus37114.0070.0038.60224.20
HHET24H. helianthus35105.0068.0035.24202.00
HHET25H. helianthus35107.0075.0029.91204.00
HHET26H. helianthus39104.0072.0030.77198.00
HHET27H. helianthus37113.0073.0035.40224.00
HHLC01H. helianthus2426.609.7.0063.5349.66
HHLC02H. helianthus3355.6033.4.0039.93100.50
HHLB01H. helianthus3035.0518.0548.5063.20
Table A3. Morphological measurement of Heliaster species from MNHNCL specimens, collected in Chile.
Table A3. Morphological measurement of Heliaster species from MNHNCL specimens, collected in Chile.
CodeSpeciesLocalityLatitudeLongitudeN° of RaysR (mm)r (mm)Free Rays (%)Max. Diameter (mm)
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866724854151.76158
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866726833953.01168
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866726774837.66158
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866723332136.3670
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866727714043.66136
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866725824545.12175
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866726825236.59165
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866726815137.04152
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866725603443.33125
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866726965443.75187
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866725623838.71115
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866727654136.92142
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866723472546.81100
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866727734045.21129
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866728533337.74108
MNHNCL-EQUI-15416H. canopusRobinson Crusoe Island−33.6167−78.866725643643.75124
MNHNCL-EQUI-15407H. canopusSanta Clara Island−33.7066−78.939322492940.82100
MNHNCL-EQUI-15407H. canopusSanta Clara Island−33.7066−78.939325683745.59132
MNHNCL-EQUI-15407H. canopusSanta Clara Island−33.7066−78.939325824347.56165
MNHNCL-EQUI-15415H. canopusRobinson Crusoe Island−33.6167−78.866724583146.55116
MNHNCL-EQUI-15415H. canopusRobinson Crusoe Island−33.6167−78.866724543142.59115
MNHNCL-EQUI-15415H. canopusRobinson Crusoe Island−33.6167−78.866727694140.58135
MNHNCL-EQUI-15415H. canopusRobinson Crusoe Island−33.6167−78.866723583244.83117
MNHNCL-EQUI-15406H. canopusSanta Clara Island−33.7066−78.939325462154.3594
MNHNCL-EQUI-15406H. canopusSanta Clara Island−33.7066−78.939325552849.09108
MNHNCL-EQUI-15406H. canopusSanta Clara Island−33.7066−78.939325502354.00104
MNHNCL-EQUI-15406H. canopusSanta Clara Island−33.7066−78.939325462643.48111
MNHNCL-EQUI-15406H. canopusSanta Clara Island−33.7066−78.939323623346.77125
MNHNCL-EQUI-15372H. canopusRobinson Crusoe Island−33.6167−78.866723341750.0071
MNHNCL-EQUI-15372H. canopusRobinson Crusoe Island−33.6167−78.866722473036.1793
MNHNCL-EQUI-15408H. canopusRobinson Crusoe Island−33.6167−78.866727694140.58149
MNHNCL-EQUI-15408H. canopusRobinson Crusoe Island−33.6167−78.866725654038.46126
MNHNCL-EQUI-15408H. canopusRobinson Crusoe Island−33.6167−78.866725482841.6789
MNHNCL-EQUI-15408H. canopusRobinson Crusoe Island−33.6167−78.866725683844.12132
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939334533337.74105
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939330452348.8983
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939335553830.91108
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939339513923.53104
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939331503334.0099
MNHNCL-EQUI-15405H. canopusSanta Clara Island−33.7066−78.939333493332.6594
MNHNCL-EQUI-15940H. canopusRobinson Crusoe Island−33.6167−78.866723412246.3492
MNHNCL-EQUI-15940H. canopusRobinson Crusoe Island−33.6167−78.866722331845.4573
MNHNCL-EQUI-15611H. canopusAlejandro Selkirk Island−33.7000−79.000021361850.0072
MNHNCL-EQUI-15611H. canopusAlejandro Selkirk Island−33.7000−79.000021331942.4269
MNHNCL-EQUI-15611H. canopusAlejandro Selkirk Island−33.7000−79.000024362141.6769
MNHNCL-EQUI-15611H. canopusAlejandro Selkirk Island−33.7000−79.000023372045.9574
MNHNCL-EQUI-15675H. canopusRobinson Crusoe Island−33.6167−78.866724774442.86152
MNHNCL-EQUI-15675H. canopusRobinson Crusoe Island−33.6167−78.866725593638.98121
MNHNCL-EQUI-15675H. canopusRobinson Crusoe Island−33.6167−78.866727623543.55127
MNHNCL-EQUI-15222H. canopusRobinson Crusoe Island−33.6167−78.866724422735.7182
MNHNCL-EQUI-15222H. canopusRobinson Crusoe Island−33.6167−78.866720402147.5081
MNHNCL-EQUI-15222H. canopusRobinson Crusoe Island−33.6167−78.866725462936.9679
MNHNCL-EQUI-15222H. canopusRobinson Crusoe Island−33.6167−78.866725372337.8474
MNHNCL-EQUI-15222H. canopusRobinson Crusoe Island−33.6167−78.866727351945.7171
MNHNCL-EQUI-15260H. canopusRobinson Crusoe Island−33.6167−78.866724372143.2473
MNHNCL-EQUI-15260H. canopusRobinson Crusoe Island−33.6167−78.866726744243.24141
MNHNCL-EQUI-15260H. canopusRobinson Crusoe Island−33.6167−78.866724673547.76129
MNHNCL-EQUI-15590H. canopusRobinson Crusoe Island−33.6167−78.866722714240.85131
MNHNCL-EQUI-15590H. canopusRobinson Crusoe Island−33.6167−78.866726563439.29117
MNHNCL-EQUI-15590H. canopusRobinson Crusoe Island−33.6167−78.866725392438.4673
MNHNCL-EQUI-15590H. canopusRobinson Crusoe Island−33.6167−78.866725342138.2472
MNHNCL-EQUI-15590H. canopusRobinson Crusoe Island−33.6167−78.866725412929.2788
MNHNCL-EQUI-15248H. canopusSan Ambrosio Island−26.3439−79.871423231152.1745
MNHNCL-EQUI-15409H. canopusRobinson Crusoe Island−33.6167−78.866723351654.2978
MNHNCL-EQUI-15410H. canopusSanta Clara Island−33.7066−78.939326573342.11126
MNHNCL-EQUI-15612H. canopusSan Ambrosio Island−26.3439−79.871424312229.0363
MNHNCL-EQUI-15748H. canopusJuan Fernandez Archipelago−33.6167−78.866724392243.5978
MNHNCL-EQUI-15910H. canopusAlejandro Selkirk Island−33.7000−79.00002125964.0055
MNHNCL-EQUI-15936H. canopusAlejandro Selkirk Island−33.7000−79.000023301936.6764
MNHNCL-EQUI-15116H. helianthusNDNDND36905440.00155
MNHNCL-EQUI-15116H. helianthusNDNDND34846127.38168
MNHNCL-EQUI-15188H. helianthusIquique−21.0906−70.135635705127.14138
MNHNCL-EQUI-15188H. helianthusIquique−21.0906−70.135633553143.64112
MNHNCL-EQUI-15379H. helianthusLas Cruces−33.5012−71.636238886526.14179
MNHNCL-EQUI-15379H. helianthusLas Cruces−33.5012−71.636237997425.25190
MNHNCL-EQUI-15109H. helianthusCobija, Tocopilla−22.5500−70.2667321026437.25205
MNHNCL-EQUI-15109H. helianthusCobija, Tocopilla−22.5500−70.2667341086737.96212
MNHNCL-EQUI-15106H. helianthusLos Vilos, Coquimbo−31.9090−71.517538745722.97152
MNHNCL-EQUI-15106H. helianthusLos Vilos, Coquimbo−31.9090−71.517534956432.63191
MNHNCL-EQUI-15108H. helianthusCobija, Tocopilla−22.5500−70.266726362336.1169
MNHNCL-EQUI-15108H. helianthusCobija, Tocopilla−22.5500−70.266727392828.2180
MNHNCL-EQUI-15679H. helianthusIquique−20.4764−70.186425291934.4856
MNHNCL-EQUI-15679H. helianthusIquique−20.4764−70.186425231247.8349
MNHNCL-EQUI-15218H. helianthusSanta Clara Island−33.7066−78.939324422540.4885
MNHNCL-EQUI-15218H. helianthusSanta Clara Island−33.7066−78.939325432346.5187
MNHNCL-EQUI-15218H. helianthusSanta Clara Island−33.7066−78.939324733749.32156
MNHNCL-EQUI-15239H. helianthusAlejandro Selkirk Island−33.7000−79.000024372240.5475
MNHNCL-EQUI-15739H. helianthusLas Cruces−33.5012−71.636226311938.7164
MNHNCL-EQUI-15021H. helianthusEl Tabo−33.4500−71.633323251732.0046
MNHNCL-EQUI-15096H. helianthusIquique−20.2194−70.171934422930.9579
MNHNCL-EQUI-15103H. helianthusLos Vilos, Coquimbo−31.9090−71.517536986335.71198
MNHNCL-EQUI-15104H. helianthusLos Vilos, Coquimbo−31.9090−71.517537674828.36131
MNHNCL-EQUI-15105H. helianthusLos Vilos, Coquimbo−31.9090−71.517538886130.68171
MNHNCL-EQUI-15107H. helianthusLos Vilos, Coquimbo−31.9090−71.517533986929.59195
MNHNCL-EQUI-15119H. helianthusQuintero−32.7667−71.533336816322.22162
MNHNCL-EQUI-15120H. helianthusQuintero−32.7667−71.5333361137930.09226
MNHNCL-EQUI-15121H. helianthusQuintero−32.7667−71.533337654924.62129
MNHNCL-EQUI-15122H. helianthusNDNDND4313710424.09274
MNHNCL-EQUI-15176H. helianthusNDNDND38584325.86118
MNHNCL-EQUI-15188H. helianthusIquique−21.0906−70.135636714438.03140
MNHNCL-EQUI-15278H. helianthusEl Tabo−33.4500−71.633318161037.5036
MNHNCL-EQUI-15374H. helianthusQuintero−32.7667−71.533332704437.14141
MNHNCL-EQUI-15594H. helianthusIsla Negra−33.4380−71.69171817947.0635
MNHNCL-EQUI-15371H. polybrachiusRobinson Crusoe Island−33.6167−78.866722422540.4883
MNHNCL-EQUI-15371H. polybrachiusRobinson Crusoe Island−33.6167−78.866724301936.6761
MNHNCL-EQUI-15368H. polybrachiusSan Ambrosio Island−26.3439−79.871420271544.4449
MNHNCL-EQUI-15368H. polybrachiusSan Ambrosio Island−26.3439−79.871422271448.1565
MNHNCL-EQUI-15370H. polybrachiusRobinson Crusoe Island−33.6167−78.866719311745.1664
MNHNCL-EQUI-15373H. polybrachiusRobinson Crusoe Island−33.6167−78.866726341944.1271
MNHNCL-EQUI-15399H. polybrachiusAlejandro Selkirk Island−33.7000−79.000024372143.2475
Table A4. Morphological measurement of Heliaster species from museum specimens.
Table A4. Morphological measurement of Heliaster species from museum specimens.
CodeSpeciesLocalityN° of Rays R (mm)r (mm)Free Rays (%)Diameter (mm)
USNM-E03771H. canopusJuan Fernandez Is., Chile2446.1524.8246.2284.92
USNME-3554H. helianthusSalaverry, Peru2935.0624.1631.0974.03
USNME-032619H. kubiniji 1868.5758.3014.98128.57
USNM-2017H. microbrachiusBaja California, Mexico3696.0070.0027.08174.00
USNM-E02624H. microbrachius 4268.3055.0019.47140.00
USNME-6767H. microbrachiusPerlas Archipelago, Panama2465.4546.0629.63139.39
MNHN-IE-2014-424-01H. canopusJuan Fernandez Is., Chile2335.1420.2742.3270.95
MNHN-IE-2014-424-02H. canopusJuan Fernandez Is., Chile2438.4419.0150.5578.17
MNHN-IE-2017-1389H. canopusChile2436.1520.0044.6770.00
MNHN-IE-2017-669H. helianthusCaldera, Chile3356.2540.0028.89117.50
MNHN-IE-2017-1831H. cuminingiPerú 4249.0939.0920.3789.09
MNHN-IE-2017-1350H. kubinijiAcapulco, Mexico2468.5731.4354.16135.71
MNHN-IE-2017-665H. microbrachiusCalifornia, EEUU3350.0037.7024.60101.10

References

  1. Mah, C.; Foltz, D. Molecular phylogeny of the Forcipulatacea (Asteroidea: Echinodermata): Systematics and biogeography. Zool. J. Linn. Soc. 2011, 162, 646–660. [Google Scholar] [CrossRef]
  2. Perrier, E. Étude sur la Repartition Géographique des Astérides; Second Series; Nouvelles Archives du Muséum d’Histoire Naturelle: Paris, France, 1878; Volume 1, pp. 1–108. [Google Scholar]
  3. Clark, H.L. The starfishes of the genus Heliaster. Bull. Mus. Comp. Zool. Harv. 1907, 51, 25–76. [Google Scholar]
  4. Castilla, J.C.; Navarrete, S.A.; Manzur, T.; Barahona, M. Heliaster helianthus; The Johns Hopkins University Press: Baltimore, MD, USA, 2013; pp. 153–160. [Google Scholar]
  5. Tokeshi, M. Development of a foraging model for a field population of the South American sun-star Heliaster helianthus. J. Anim. Ecol. 1989, 58, 189–206. [Google Scholar] [CrossRef]
  6. Perrier, E. Révision de la collection de Stellérides du Muséum d’Histoire Naturelle de Paris. Arch. Zool. Exp. Gen. 1875, 4, 265–450. [Google Scholar]
  7. Alvarado, J.J.; Solís-Marín, F.A. Echinoderm research and diversity in Latin America. In Echinoderm Research and Diversity in Latin America; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–9. [Google Scholar] [CrossRef]
  8. de Lamarck, J.B.P.A. Asterie. In Histoire Naturelle des Animaux sans Vertèbres; Verdière: Paris, France, 1816; Volume 2, pp. 547–568. [Google Scholar]
  9. Rozbaczylo, N.; Castilla, J.C. Invertebrados marinos del archipiélago de Juan Fernández. In Islas Oceánicas Chilenas: Conocimiento Científico y Necesidades de Investigaciones; Ediciones Universidad Católica de Chile: Santiago, Chile, 1987; pp. 167–189. [Google Scholar]
  10. Martínez, A.; Merino-Yunnissi, C.; Mutschke, E. A new catalogue for the echinoderms housed in the collection of Invertebrate Zoology Department at the National Museum of Natural History, Chile. Publicación Ocas. Mus. Nac. Hist. Nat. 2018, 68, 1–88. [Google Scholar]
  11. Ramírez, M.E.; Osorio, C. Patrones de distribución de macroalgas y macroinvertebrados intermareales de la isla Robinson Crusoe, archipiélago de Juan Fernández, Chile. Investig. Mar. 2000, 28, 1–13. [Google Scholar] [CrossRef]
  12. Rodríguez-Ruiz, M.C.; Andreu-Cazenave, M.; Ruz, C.S.; Ruano-Chamorro, C.; Ramírez, F.; González, C.; Fernández, M. Initial assessment of coastal benthic communities in the Marine Parks at Robinson Crusoe Island. Lat. Am. J. Aquat. Res. 2014, 42, 918–936. [Google Scholar] [CrossRef]
  13. Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.A.X.; Robertson, J. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef]
  14. Friedlander, A.M.; Ballesteros, E.; Caselle, J.E.; Gaymer, C.F.; Palma, A.T.; Petit, I.; Varas, E.; Wilson, A.M.; Sala, E. Marine biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global endemism hotspots. PLoS ONE 2016, 11, e0145059. [Google Scholar] [CrossRef]
  15. Delrieu-Trottin, E.; Hartmann-Salvo, H.; Saenz-Agudelo, P.; Landaeta, M.F.; Pérez-Matus, A. DNA reconciles morphology and colouration in the drunk blenny genus Scartichthys (Teleostei: Blenniidae) and provides insights into their evolutionary history. J. Fish Biol. 2022, 100, 507–518. [Google Scholar] [CrossRef]
  16. Pardo-Gandarillas, M.C.; Carrasco, S.A.; Varela, A.I.; Ibáñez, C.M. Systematic and biogeography of two sympatric octopuses from the remote Juan Fernández Archipelago, South Pacific Ocean. Rev. Fish Biol. Fish. 2024, 34, 1685–1706. [Google Scholar] [CrossRef]
  17. Stuessy, T.F.; Foland, K.A.; Sutter, J.F.; Sanders, R.W.; Silva, M. Botanical and geological significance of potassium-argon dates from the Juan Fernandez Islands. Science 1984, 225, 49–51. [Google Scholar] [CrossRef]
  18. Haye, P.A.; Segovia, N.I.; Muñoz-Herrera, N.C.; Gálvez, F.E.; Martínez, A.; Meynard, A.; Faugeron, S. Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. PLoS ONE 2014, 9, e88613. [Google Scholar] [CrossRef]
  19. Aljanabi, S.M.; Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 1997, 25, 4692–4693. [Google Scholar] [CrossRef]
  20. Hoareau, T.B.; Boissin, E. Design of phylum-specific hybrid primers for DNA barcoding: Addressing the need for efficient COI amplification in the Echinodermata. Mol. Ecol. Resour. 2010, 10, 960–967. [Google Scholar] [CrossRef]
  21. Foltz, D.W.; Mah, C.L. Recent relaxation of purifying selection on the tandem-repetitive early-stage histone H3 gene in brooding sea stars. Mar. Genom. 2009, 2, 113–118. [Google Scholar] [CrossRef]
  22. Filatov, D.A. ProSeq: A software for preparation and evolutionary analysis of DNA sequence data sets. Mol. Ecol. Notes 2002, 2, 621–624. [Google Scholar] [CrossRef]
  23. Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef]
  24. Nguyen, L.T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
  25. Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
  26. Minh, B.Q.; Nguyen, M.A.T.; Von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
  27. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
  28. Rambaut, A.; Drummond, A.J.; Suchard, M. Tracer V1.6—MCMC Trace Analysis Package; Institute of Evolutionary Biology, Department of Computer Science: Edinburgh, UK, 2013. [Google Scholar]
  29. Rambaut, A. FigTree. Tree Figure Drawing Tool. Edinburgh, UK. 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 20 August 2025).
  30. Zhang, J.J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [PubMed]
  31. Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
  32. Manzur, T.; Barahona, M.; Navarrete, S.A. Ontogenetic changes in habitat use and diet of the sea-star Heliaster helianthus on the coast of central Chile. J. Mar. Biol. Assoc. U. K. 2010, 90, 537–546. [Google Scholar] [CrossRef]
  33. Cornejo, C.F.; Vargas, T.; Curaz, S.; Sellanes, J.; Ibáñez, C.M. La regla de islas y el tamaño corporal del poliplacóforo Plaxiphora mercatoris en Rapa Nui. Rev. Biol. Mar. Oceanogr. 2022, 57, 112–118. [Google Scholar] [CrossRef]
  34. Foltz, D.W.; Bolton, M.T.; Kelley, S.P.; Kelley, B.D.; Nguyen, A.T. Combined mitochondrial and nuclear sequences support the monophyly of forcipulatacean sea stars. Mol. Phylogenet. Evol. 2007, 43, 627–634. [Google Scholar] [CrossRef]
  35. Navarrete, S.A.; Manzur, T. Individual- and population-level responses of a keystone predator to geographic variation in prey. Ecology 2008, 89, 2005–2018. [Google Scholar] [CrossRef]
  36. Hormazabal, S.; Combes, V.; Morales, C.E.; Correa-Ramirez, M.A.; Di Lorenzo, E.; Nuñez, S. Intrathermocline eddies in the coastal transition zone off central Chile (31–41°S). J. Geophys. Res. Ocean. 2013, 118, 4811–4821. [Google Scholar] [CrossRef]
Figure 1. Sampling sites of the sea star species utilized in this study. The map was built using the open-source GIS software QGIS 4.0. Available online: https://qgis.org/ (accessed on 11 June 2025).
Figure 1. Sampling sites of the sea star species utilized in this study. The map was built using the open-source GIS software QGIS 4.0. Available online: https://qgis.org/ (accessed on 11 June 2025).
Taxonomy 05 00059 g001
Figure 2. Photographs of specimens of Heliaster from the collection of the Musée National D’Histoire Naturelle de Paris (MNHN). (a,b) Oral and aboral sides of H. helianthus, respectively, and (c,d) oral and aboral sides of H. canopus, respectively.
Figure 2. Photographs of specimens of Heliaster from the collection of the Musée National D’Histoire Naturelle de Paris (MNHN). (a,b) Oral and aboral sides of H. helianthus, respectively, and (c,d) oral and aboral sides of H. canopus, respectively.
Taxonomy 05 00059 g002
Figure 3. Morphological traits of Heliaster, including: Heliaster helianthus MNHNCL EQUI-17521 neotype photographs (ad) (diameter: 170.93 mm). Heliaster polybrachius MNHNCL EQUI-17515 photographs (eh) (diameter: 88.48 mm). Heliaster canopus MNHNCL EQUI-17516 photographs (il) (diameter: 75.18 mm).
Figure 3. Morphological traits of Heliaster, including: Heliaster helianthus MNHNCL EQUI-17521 neotype photographs (ad) (diameter: 170.93 mm). Heliaster polybrachius MNHNCL EQUI-17515 photographs (eh) (diameter: 88.48 mm). Heliaster canopus MNHNCL EQUI-17516 photographs (il) (diameter: 75.18 mm).
Taxonomy 05 00059 g003
Figure 4. Distribution map of Heliaster helianthus along the Southern Pacific coast. Red points indicate specimens sampled in the present study; black points represent records from the Museo Nacional de Historia Natural de Chile (MNHNCL); and blue points correspond to occurrences documented in the published literature. The map was built using the open-source GIS software QGIS 4.0. Available online: https://qgis.org/ (accessed on 11 June 2025).
Figure 4. Distribution map of Heliaster helianthus along the Southern Pacific coast. Red points indicate specimens sampled in the present study; black points represent records from the Museo Nacional de Historia Natural de Chile (MNHNCL); and blue points correspond to occurrences documented in the published literature. The map was built using the open-source GIS software QGIS 4.0. Available online: https://qgis.org/ (accessed on 11 June 2025).
Taxonomy 05 00059 g004
Figure 5. Field photographs of live Heliaster individuals in their natural habitats along the Chilean coasts. (a) El Muelle, Robinson Crusoe Island (2015); (b) La Pampilla, Coquimbo (2016); (c) Herradura Bay, Coquimbo (2015); (d) Punta de Lobos, Robinson Crusoe Island (2025).
Figure 5. Field photographs of live Heliaster individuals in their natural habitats along the Chilean coasts. (a) El Muelle, Robinson Crusoe Island (2015); (b) La Pampilla, Coquimbo (2016); (c) Herradura Bay, Coquimbo (2015); (d) Punta de Lobos, Robinson Crusoe Island (2025).
Taxonomy 05 00059 g005
Figure 6. Neotype of H. helianthus from Quintay, Chile. (a) Oral side, (b) Aboral side.
Figure 6. Neotype of H. helianthus from Quintay, Chile. (a) Oral side, (b) Aboral side.
Taxonomy 05 00059 g006
Figure 7. Morphometric variation among Heliaster species. The figure depicts relationships among key body measurements highlighting both intra- and interspecific variability across sampled individuals. (A) Relationship between diameter and number of rays, (B) Relationship between diameter and major radius, (C) Relationship between diameter and minor radius, (D) Relationship between diameter and percentage of free ray.
Figure 7. Morphometric variation among Heliaster species. The figure depicts relationships among key body measurements highlighting both intra- and interspecific variability across sampled individuals. (A) Relationship between diameter and number of rays, (B) Relationship between diameter and major radius, (C) Relationship between diameter and minor radius, (D) Relationship between diameter and percentage of free ray.
Taxonomy 05 00059 g007
Figure 8. Phylogram of Asteroidea based on concatenated COI and H3 gene sequences. Nodes support values correspond to bootstrap/posterior probabilities. Vertical lines denote species grouping recovered by different species delimitation methods (bPTP and ASAP).
Figure 8. Phylogram of Asteroidea based on concatenated COI and H3 gene sequences. Nodes support values correspond to bootstrap/posterior probabilities. Vertical lines denote species grouping recovered by different species delimitation methods (bPTP and ASAP).
Taxonomy 05 00059 g008
Table 1. Morphological characteristics in species of the genus Heliaster and their geographical distribution according to different authors.
Table 1. Morphological characteristics in species of the genus Heliaster and their geographical distribution according to different authors.
No. of RaysPercentage of Free RaysDistribution
H. helianthus30 or more30% or moreTropical, subtropical and temperate west coasts of South AmericaMexico, Peru, ChileWest coast of South AmericaPaita, Callao, Caldera, Valparaiso.
H. canopus28 or less40–70%Juan Fernandez Archipelago, ChileEastern IslandsJuan Fernandez Archipelago, ChileJuan Fernandez Archipelago, Chile
H. cuminigi30 or moremore than 20%Galapagos Islands, EcuadorNicaraguaGalapagos Islands, EcuadorZorritos, Paita, Peru. Galapagos Islands, Ecuador
H. solaris28 or less50–70%Galapagos Islands, EcuadorCosta RicaGalapagos Islands, EcuadorGalapagos Islands, Ecuador
H. polybrachius30 or moremore than 20%Tropical coast of PeruMexico, Ecuador, PeruWest coast of tropical South America-
H. microbrachius30 or more30% or lessWest coast of Mexico and Central AmericaMexico, Panama, PeruWest coast of Mexico and Central AmericaMargarita Bay, La Paz, Cape San Lucas, Mazatlan, Acapulco, Hawaiian Islands.
References[3][3][4][7][3][2]
Table 2. List of species employed in the phylogeny and their corresponding Genbank accession numbers for the COI and H3 genes.
Table 2. List of species employed in the phylogeny and their corresponding Genbank accession numbers for the COI and H3 genes.
SpeciesCOIH3
Heliaster helianthusJQ918254JQ918206
Stichaster striatusJX130053EU707677
Odontaster validusGQ294396EU707663
Ophiura robustaMG935300KP113641
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Catalán, J.; Ibáñez, C.M.; Carrasco, S.A.; Sellanes, J.; Díaz, A.; Pardo-Gandarillas, M.C. Systematic Evaluation of Sea Stars of the Genus Heliaster from the Southeastern Pacific and Redescription of Heliaster helianthus. Taxonomy 2025, 5, 59. https://doi.org/10.3390/taxonomy5040059

AMA Style

Catalán J, Ibáñez CM, Carrasco SA, Sellanes J, Díaz A, Pardo-Gandarillas MC. Systematic Evaluation of Sea Stars of the Genus Heliaster from the Southeastern Pacific and Redescription of Heliaster helianthus. Taxonomy. 2025; 5(4):59. https://doi.org/10.3390/taxonomy5040059

Chicago/Turabian Style

Catalán, Jennifer, Christian M. Ibáñez, Sergio A. Carrasco, Javier Sellanes, Angie Díaz, and M. Cecilia Pardo-Gandarillas. 2025. "Systematic Evaluation of Sea Stars of the Genus Heliaster from the Southeastern Pacific and Redescription of Heliaster helianthus" Taxonomy 5, no. 4: 59. https://doi.org/10.3390/taxonomy5040059

APA Style

Catalán, J., Ibáñez, C. M., Carrasco, S. A., Sellanes, J., Díaz, A., & Pardo-Gandarillas, M. C. (2025). Systematic Evaluation of Sea Stars of the Genus Heliaster from the Southeastern Pacific and Redescription of Heliaster helianthus. Taxonomy, 5(4), 59. https://doi.org/10.3390/taxonomy5040059

Article Metrics

Back to TopTop