Concurrent Analysis of Antioxidant and Pro-Oxidant Activities in Compounds from Plant Cell Cultures
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microplate Method
2.3. Definition of the Conversion Intervals
2.4. Application of Tested Samples
2.5. Microplate Setup and Reagent Distribution
2.6. Assay Initialization
2.7. Incubation and Measurement
2.8. Statistical Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sotler, R.; Poljšak, B.; Dahmane, R.; Jukić, T.; Jukić, D.P.; Rotim, C.; Trebše, P.; Starc, A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019, 58, 726–736. [Google Scholar] [CrossRef]
- Khan, D.; Zaki, M.J. The stomatal types in Sesbania bispinosa (Jacq.) W. F. Wight seedlings. Int. J. Biol. Biotechnol. 2019, 16, 1047–1061. [Google Scholar]
- Felten, S.; He, C.Q.; Weisel, M.; Shevlin, M.; Emmert, M.H. Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C-H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. J. Am. Chem. Soc. 2022, 144, 23115–23126. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The Traditional Medicine and Modern Medicine from Natural Products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef]
- Rahman, M.; Bibi, S.; Rahaman, S.; Rahman, F.; Islam, F.; Saad Khan, M.S.; Hasan, M.M.; Parvez, A.; Hossain, A.; Maeesa, S.K.; et al. Natural therapeutics and nutraceuticals for lung diseases: Traditional significance, phytochemistry, and pharmacology. Biomed. Pharmacother. 2022, 150, 113041. [Google Scholar] [CrossRef] [PubMed]
- Dorni, C.A.I.; Amalraj, A.; Gopi, S.; Varma, K.; Anjana, S.N. Novel cosmeceuticals from plants—An industry guided review. J. Appl. Res. Med. Aromat. Plants 2017, 7, 1–26. [Google Scholar] [CrossRef]
- Mutatkar, R.K. Integrative Perspectives: Ayurveda, Phytopharmaceuticals and Natural Products: A Book Review. J. Ayurveda Integr. Med. 2021, 12, 729–732. [Google Scholar] [CrossRef]
- Manoharlal, R.; Saiprasad, G.V.S.; Dwivedi, S.D.; Singh, M.R.; Singh, D. Chapter 12—Commercial aspect and market potential of phytoactive products. In Phytopharmaceuticals and Herbal Drugs; Singh, M.R., Singh, D., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 281–301. ISBN 9780323991254. [Google Scholar] [CrossRef]
- Ochoa-Villarreal, M.; Howat, S.; Hong, S.; Jang, M.O.; Jin, Y.-W.; Lee, E.K.; Loake, G.J. Plant cell culture strategies for the production of natural Products. BMB Rep. 2016, 49, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef]
- Alsaif, G.; Tasleem, M.; Rezgui, R.; Alshaghdali, K.; Saeed, A.; Saeed, M. Network pharmacology and molecular docking analysis of Catharanthus roseus compounds: Implications for non-small cell lung cancer treatment. J. King Saud Univ.-Sci. 2024, 36, 103134. [Google Scholar] [CrossRef]
- Chu, Q.; Vincent, M.; Logan, D.; Mackay, J.A.; Evans, W.K. Taxanes as first-line therapy for advanced non-small cell lung cancer: A systematic review and practice guideline. Lung Cancer 2005, 50, 355–374. [Google Scholar] [CrossRef]
- Lee, W.-L.; Shiau, J.-Y.; Lie-Fen Shyur, L.-F. Chapter 4—Taxol, Camptothecin and Beyond for Cancer Therapy. In Advances in Botanical Research; Shyur, L.-F., Lau, S.Y.A., Eds.; Academic Press: Cambridge, MA, USA, 2012; Volume 62, pp. 133–178. ISBN 9780123945914. [Google Scholar] [CrossRef]
- Shu, G.; Xu, D.; Zhang, W.; Zhao, X.; Li, H.; Xu, F.; Yin, L.; Peng, X.; Fu, H.; Chang, L.-J.; et al. Preparation of shikonin liposome and evaluation of its in vitro antibacterial and in vivo infected wound healing activity. Phytomedicine 2022, 99, 154035. [Google Scholar] [CrossRef] [PubMed]
- Twaij, B.M.; Taha, A.J.; Bhuiyan, F.H.; Md Hasan, N. Effect of saccharides on secondary compounds production from stem derived callus of Datura inoxia. Biotechnol. Rep. 2022, 33, e00701. [Google Scholar] [CrossRef]
- Hasson, S.S.A.; Al-Balushi, M.S.; Alharthy, K.; Al-Busaidi, J.Z.; Aldaihani, M.S.; Othman, M.S.; Said, E.A.; Habal, O.; Sallam, T.A.; Aljabri, A.A.; et al. Evaluation of anti-resistant activity of Auklandia (Saussurea lappa) root against some human pathogens. Asian Pac. J. Trop. Biomed. 2013, 3, 557–562. [Google Scholar] [CrossRef]
- Coimbra, A.; Ferreira, S.; Duarte, A.P. Biological properties of Thymus zygis essential oil with emphasis on antimicrobial activity and food application. Food Chem. 2022, 393, 133370. [Google Scholar] [CrossRef]
- Kong, X.; Liu, Q.; Zheng, M.; Liu, J.; Zhang, C.; Wang, H. Structural characterization of Ginkgo biloba L. leaves cyclopeptides and anti-inflammatory potency evaluation in human umbilical vein endothelial cells. Phytochem. Lett. 2020, 39, 12–18. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, T.; Luo, L.; Li, L.; Cao, W.; Xu, X.; Zhang, Y.; Yue, P.; Dai, X.; Ji, Z.; et al. Isoforskolin and Cucurbitacin IIa promote the expression of anti-inflammatory regulatory factor SIGIRR in human macrophages stimulated with Borrelia burgdorferi basic membrane protein A. Int. Immunopharmacol. 2020, 88, 106914. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gao, C.; Luo, M.; Wang, W.; Gu, C.; Zu, Y.; Li, J.; Efferth, T.; Fu, Y. Aspidin PB, a phloroglucinol derivative, induces apoptosis in human hepatocarcinoma HepG2 cells by modulating PI3K/Akt/GSK3β pathway. Chem.-Biol. Interact. 2013, 201, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kurek, J.M.; Mikolajczyk-Stecyna, J.; Krejpcio, Z. Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression—An in vivo study. Biomed. Pharmacother. 2023, 166, 115424. [Google Scholar] [CrossRef]
- Lim, S.; Park, K.S. Chapter 17—The Use of Ginkgo biloba Extract in Cardiovascular Protection in Patients with Diabetes. In Preedy, Diabetes: Oxidative Stress and Dietary Antioxidants; Victor, R., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 165–172. ISBN 9780124058859. [Google Scholar] [CrossRef]
- Jandari, S.; Hatami, E.; Ziaei, R.; Ghavami, A.; Yamchi, A.M. The effect of pomegranate (Punica granatum) supplementation on metabolic status in patients with type 2 diabetes: A systematic review and meta-analysis. Complement. Ther. Med. 2020, 52, 102478. [Google Scholar] [CrossRef]
- Mendes, F.R.; Mattei, R.; de Araújo Carlini, E.L. Activity of Hypericum brasiliense and Hypericum cordatum on the central nervous system in rodents. Fitoterapia 2002, 73, 462–471. [Google Scholar] [CrossRef]
- Schallert, T.; De Ryck, M.; Whishaw, I.Q.; Ramirez, V.D.; Teitelbaum, P. Excessive bracing reactions and their control by atropine and l-DOPA in an animal analog of parkinsonism. Exp. Neurol. 1979, 64, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Maliar, T.; Maliarová, M.; Blažková, M.; Kunštek, M.; Uváčková, Ľ.; Viskupičová, J.; Purdešová, A.; Beňovič, P. Simultaneously Determined Antioxidant and Pro-Oxidant Activity of Randomly Selected Plant Secondary Metabolites and Plant Extracts. Molecules 2023, 28, 6890. [Google Scholar] [CrossRef]
- Falleh, H.; Oueslati, S.; Guyot, S.; Dali, A.B.; Magné, C.; Abdelly, C.; Ksouri, R. LC/ESI-MS/MS characterisation of procyanidins and propelargonidins responsible for the strong antioxidant activity of the edible halophyte Mesembryanthemum edule L. Food Chem. 2011, 127, 1732–1738. [Google Scholar] [CrossRef]
- Lobato, C.C.; de Sousa Cardoso, A.G.B.; Vale, J.K.L.; de Aguiar, C.P.O.; da Silva, A.B.F.; Borges, R.S. Quercetin analogues of kojic acid as strong antioxidant derivatives: Theoretical insights. J. Mol. Struct. 2025, 1322, 140480. [Google Scholar] [CrossRef]
- Allegra, M.; D’Acquisto, F.; Tesoriere, L.; Attanzio, A.; Livrea, M.A. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages. Redox Biol. 2014, 2, 892–900. [Google Scholar] [CrossRef]
- Boulebd, H. Mechanistic Insights into the Antioxidant and Pro-oxidant Activities of Bromophenols from Marine Algae: A DFT Investigation. J. Org. Chem. 2024, 89, 8168–8177. [Google Scholar] [CrossRef] [PubMed]
- Pessoa, A.S.; Tokuhara, C.K.; Fakhoury, V.S.; Pagnan, A.L.; de Oliveira, G.S.N.; Sanches, M.L.R.; Inacio, K.K.; Costa, B.C.; Ximenes, V.F.; de Oliveira, R.C. The dimerization of methyl vanillate improves its effect against breast cancer cells via pro-oxidant effect. Chem.-Biol. Interact. 2022, 361, 109962. [Google Scholar] [CrossRef]
- Song, X.; Liu, B.-F.; Kong, F.; Ren, N.-Q.; Hong-Yu Ren, H.-Y. Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resour. Conserv. Recycl. 2022, 183, 106355. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Klesel, M.; Schuberth, F.; Niehaves, B.; Henseler, J. Multigroup Analysis in Information Systems Research using PLS-PM: A Systematic Investigation of Approaches. Data Base Adv. Inf. Syst. 2022, 53, 26–48. [Google Scholar] [CrossRef]
- Anand, V.; Kashyap, M.; Sharma, M.P.; Bala, K. Impact of hydrogen peroxide on microalgae cultivated in varying salt-nitrate-phosphate conditions. J. Environ. Chem. Eng. 2021, 9, 105814. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, H.; Niu, C.; Chen, X.; Storey, K.B. Effect of exogenous hydrogen peroxide on ROS balance and antioxidant response in Chinese soft-shelled turtle Pelodiscus sinensis. Aquaculture 2019, 501, 293–303. [Google Scholar] [CrossRef]


| Compound | CAS Number | DPPH50 (μM) | r2 | FRAP50 (μM) | r2 | PABI |
|---|---|---|---|---|---|---|
| Tannic acid | 1401-55-4 | 70 ± 0 | 0.982 | 100 ± 11 | 0.955 | 1.43 |
| Rhamnetin | 90-19-7 | 180 ± 22 | 0.991 | 160 ± 20 | 0.978 | 0.89 |
| a-Tocopherol | 59-02-9 | 150 ± 21 | 0.987 | 190 ± 18 | 0.959 | 1.27 |
| Gallic acid | 149-91-7 | 230 ± 20 | 0.899 | 310 ± 31 | 0.961 | 1.35 |
| 1,2,3,4,6-Penta-O-Galloyl-Β-D-Glucose | 14937-32-7 | 300 ± 42 | 0.969 | 210 ± 19 | 0.957 | 0.70 |
| Chlorogenic acid | 327-97-9 | 380 ± 44 | 0.951 | 370 ± 36 | 0.972 | 0.97 |
| Cyanidin. HCl | 528-58-5 | 320 ± 28 | 0.959 | 330 ± 21 | 0.981 | 1.03 |
| Kaempferol | 520-18-3 | 450 ± 51 | 0.912 | 270 ± 30 | 0.988 | 0.60 |
| Rosmarinic acid | 20283-92-5 | 700 ± 32 | 0.984 | 120 ± 10 | 0.970 | 0.17 |
| Sinapic acid | 530-59-6 | 760 ± 81 | 0.995 | 740 ± 68 | 0.986 | 0.97 |
| Arbutin | 497-76-7 | 800 ± 91 | 0.976 | 1710 ± 199 | 0.964 | 2.14 |
| 1,4-Dithiothreitol | 3483-12-3 | 940 ± 112 | 0.923 | 550 ± 69 | 0.942 | 0.59 |
| Syringic acid | 530-57-4 | 1440 ± 185 | 0.985 | 1100 ± 150 | 0.986 | 0.76 |
| Polydatin | 65914-17-2 | 1710 ± 219 | 0.959 | 2600 ± 302 | 0.976 | 1.52 |
| Luteolin | 491-70-3 | 1810 ± 227 | 0.947 | 670 ± 92 | 0.963 | 0.37 |
| Hesperetin | 520-33-2 | 6810 ± 792 * | 0.924 | 2210 ± 260 | 0.893 | 0.32 |
| 3-Hydroxyflavone | 577-85-5 | over | 3520 ± 410 | 0.961 | ||
| Biochanin A | 491-80-5 | over | 5030 ± 0.65 * | 0.995 | ||
| Scopolamine | 51-34-3 | over | 13,920 ± 1180 * | 0.982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blažková, M.; Uváčková, Ľ.; Maliarová, M.; Sokol, J.; Viskupičová, J.; Maliar, T. Concurrent Analysis of Antioxidant and Pro-Oxidant Activities in Compounds from Plant Cell Cultures. BioTech 2025, 14, 91. https://doi.org/10.3390/biotech14040091
Blažková M, Uváčková Ľ, Maliarová M, Sokol J, Viskupičová J, Maliar T. Concurrent Analysis of Antioxidant and Pro-Oxidant Activities in Compounds from Plant Cell Cultures. BioTech. 2025; 14(4):91. https://doi.org/10.3390/biotech14040091
Chicago/Turabian StyleBlažková, Marcela, Ľubica Uváčková, Mária Maliarová, Jozef Sokol, Jana Viskupičová, and Tibor Maliar. 2025. "Concurrent Analysis of Antioxidant and Pro-Oxidant Activities in Compounds from Plant Cell Cultures" BioTech 14, no. 4: 91. https://doi.org/10.3390/biotech14040091
APA StyleBlažková, M., Uváčková, Ľ., Maliarová, M., Sokol, J., Viskupičová, J., & Maliar, T. (2025). Concurrent Analysis of Antioxidant and Pro-Oxidant Activities in Compounds from Plant Cell Cultures. BioTech, 14(4), 91. https://doi.org/10.3390/biotech14040091

