Chemical Profiling and Bioactivity of Microalgae Extracts for Enhancing Growth and Anthracnose Resistance in the Common Bean (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Obtaining of Hydroalcoholic Extracts
2.3. Chemical Characterization of MEs
2.4. Assessment of Conidia Germination and Mycelial Growth
2.5. Evaluation of MEs in the Severity of Anthracnose and Plant Grownth
2.5.1. Treatments with MEs
2.5.2. Inoculation and Assessment of Anthracnose Severity
2.5.3. Measurement of Length of Plant Shoot and Roots
2.5.4. Determination of Fresh and Dry Weight
2.5.5. Quantification of Leaf Pigments
2.6. Experimental Design and Statistical Analysis
3. Results
3.1. Chemical Profiling of MEs
3.2. Effect of MEs on the Conidial Germination and Mycelial Growth of C. lindemuthianum
3.3. Effect of MEs of Anthracnose Severity
3.4. Effect of MEs on Bean Plant Length of Plant Shoot, Roots, and Total
3.5. Effect of MEs on Fresh and Dry Weight Plant
3.6. Effect of MEs on Leaf Pigments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delgado, D.Z.; De Freitas, M.B.; Stadnik, M.J. Effectiveness of saccharin and ulvan as resistance inducers against rust and angular leaf spot in bean plants (Phaseolus vulgaris). Crop Prot. 2013, 47, 67–73. [Google Scholar] [CrossRef]
- Assefa, T.; Assibi Mahama, A.; Brown, A.V.; Canhão, E.K.S.; Rubyogo, J.C.; Rao, I.M.; Blair, M.W.; Canhão, S.B. A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol. Breed. 2019, 39, 20. [Google Scholar] [CrossRef]
- Singh, S.P.; Schwartz, H.F. Breeding common bean for resistance to diseases: A review. Crop Sci. 2010, 50, 2199–2223. [Google Scholar] [CrossRef]
- De Freitas, M.B.; Stadnik, M.J. Race-specific and ulvan-induced defense responses in bean (Phaseolus vulgaris) against Colletotrichum lindemuthianum. Physiol. Mol. Plant Pathol. 2012, 78, 8–13. [Google Scholar] [CrossRef]
- Wordell-Filho, J.A.; De Freitas, M.B.; Stadnik, M.J.; Theodoro, G.F. Manejo de doenças na cultura do feijão. In Manejo Fitossanitário na Cultura do Feijão, 1st ed.; Wordell-Filho, J.A., Chiaradia, L.A., Balbinot, A., Eds.; Epagri: Florianopolis, Brazil, 2013; pp. 9–41. ISBN 9788585014704. [Google Scholar]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of microalgae as biopesticides to contribute to sustainable agriculture and environmental development. J. Environ. Sci. Health 2019, 54 Pt B, 366–375. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as Bio-Fertilizers: Between Current Situation and Future Prospective: The Role of Algae as a Bio-Fertilizer in Serving of Ecosystem. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef]
- Miranda, A.M.; Hernandez-Tenorio, F.; Villalta, F.; Vargas, G.J.; Sáez, A.A. Advances in the Development of Biofertilizers and Biostimulants from Microalgae. Biology 2024, 13, 199. [Google Scholar] [CrossRef]
- Boutahiri, S.; Benrkia, R.; Tembeni, B.; Idowu, O.E.; Olatunji, O.J. Effect of biostimulants on the chemical profile of food crops under normal and abiotic stress conditions. Curr. Plant Biol. 2024, 40, 100410. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as Multi-Functional Options in Modern Agriculture: Current Trends, Prospects and Challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Lee, S.M.; Ryu, C.M. Algae as new kids in the beneficial plant microbiome. Front. Plant Sci. 2021, 12, 599742. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Goemann, H.M.; Peyton, B.M.; Gardner, R.D. Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Res. 2021, 54, 102200. [Google Scholar] [CrossRef]
- Elarroussia, H.; Elmernissia, N.; Benhimaa, R.; Meftah, E.; Kadmiria, I.; Bendaou, N.; Smouni, A.; Wahby, I. Microalgae polysaccharides a promising plant growth biostimulant. J Algal Biomass Util. 2016, 7, 55–63. [Google Scholar]
- Vehapi, M.; Yilmaz, A.; Ozcimen, D. Antifungal Activities of Chlorella vulgaris and Chlorella minutissima Microalgae Cultivated in Bold Basal Medium, Wastewater and Tree Extract Water Against Aspergillus niger and Fusarium oxysporum. Dep. Bioeng. Rom. Biotechnol. Lett. 2018, 1, 1–8. [Google Scholar] [CrossRef]
- Ranglová, K.; Lakatos, G.E.; Câmara Manoel, J.A.; Grivalský, T.; Suárez Estrella, F.; Acién Fernández, F.G.; Molnár, Z.; Ördög, V.; Masojídek, J. Growth, biostimulant and biopesticide activity of the MACC-1 Chlorella strain cultivated outdoors in inorganic medium and wastewater. Algal Res. 2021, 53, 102136. [Google Scholar] [CrossRef]
- Oliveira, C.Y.B.; D’Alessandro, E.B.; Antoniosi Filho, N.R.; Lopes, R.G.; Derner, R.B. Synergistic effect of growth conditions and organic carbon sources for improving biomass production and biodiesel quality by the microalga Choricystis minor var. minor. Sci. Total Environ. 2021, 759, 143476. [Google Scholar] [CrossRef]
- Sales, R.; Derner, R.; Tsuzuki, M. Effects of different harvesting and processing methods on Nannochloropsis oculata concentrates and their application on rotifer Brachionus sp. cultures. J. Appl. Phycol. 2019, 31, 3607–3615. [Google Scholar] [CrossRef]
- Abreu, G.F.; Talamini, V.; Stadnik, M.J. Bioprospecção de macroalgas marinhas e plantas aquáticas para o controle da antracnose do feijoeiro. Summa Phytopathol. 2008, 34, 22–26. [Google Scholar] [CrossRef]
- Tsugawa, H.; Kind, T.; Nakabayashi, R.; Yukihira, D.; Tanaka, W.; Cajka, T.; Saito, K.; Fiehn, O.; Arita, M. Hydrogen Rearrangement Rules: Computational MS/MS Fragmentation and Structure Elucidation Using MS-FINDER Software. Anal. Chem. 2016, 88, 7946–7958. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Wang, X.; Li, N.; Chen, S.; Ge, Y.H.; Xiao, Y.; Zhao, M.; Wu, J.L. MS-FINDER Assisted in Understanding the Profile of Flavonoids in Temporal Dimension during the Fermentation of Pu-erh Tea. J. Agric. Food Chem. 2022, 70, 7085–7094. [Google Scholar] [CrossRef]
- Gonçalves, A.E.; Stadnik, M.J. Interferência de ulvana no desenvolvimento e melanização de apressórios de Colletotrichum gloeosporioides. Trop. Plant Pathol. 2012, 37, 431–437. [Google Scholar] [CrossRef]
- Paulert, R.; Talamini, V.; Cassolato, J.E.F.; Duarte, M.; Noseda, M.D.; Smania, J.A.; Stadnik, M.J. Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.). J. Plant Dis. Protect. 2009, 116, 263–270. [Google Scholar] [CrossRef]
- Rava, C.A.; Molina, J.; Kauffmann, M.; Briones, I. Determinación de razas fisiológicas de Colletotrichum lindemuthianum en Nicaragua. Fitopatol. Bras. 1992, 18, 388–391. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1978, 57, 1332–1334. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutions. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.C.; Colla, L.M. Use of microalgae for the development of biofertilizers and biostimulants. BioEnergy Res. 2023, 16, 289–310. [Google Scholar] [CrossRef]
- Poveda, J.; Díez-Méndez, A. Use of elicitors from macroalgae and microalgae in the management of pests and diseases in agriculture. Phytoparasitica 2023, 51, 667–701. [Google Scholar] [CrossRef]
- Dmytryk, A.; Samoraj, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Bioactive fatty acids and compounds from Spirulina (Arthrospira) platensis: Potential as biostimulants for plant growth. Sustain. Chem. Pharm. 2022, 30, 100899. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’aversana, E.; Carrillo, P. Spatial and temporal profile of Glycine betaine accumulation in plants under abiotic stresses. Front. Plant Sci. 2019, 10, 230. [Google Scholar] [CrossRef]
- Rachidi, F.; Benhima, R.; Kasmi, Y.; Sbabou, L.; Arroussi, H.E. Evaluation of microalgae polysaccharides as biostimulants of tomato plant defense using metabolomics and biochemical approaches. Sci. Rep. 2021, 11, 930. [Google Scholar] [CrossRef] [PubMed]
- Sami, F.; Yusuf, M.; Faizan, M.; Faraz, A.; Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 2016, 109, 54–61. [Google Scholar] [CrossRef]
- Jiménez-Arias, D.; García-Machado, F.J.; Morales-Sierra, S.; García-García, A.L.; Herrera, A.J.; Valdés, F.; Luis, J.C.; Borges, A.A. A beginner’s guide to osmoprotection by biostimulants. Plants 2021, 10, 363. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.; Campo, S.; Rufat, M.; Estopà, M.; Messeguer, J.; Segundo, B.S.; Coca, M. Sucrose-mediated priming of plant defense responses and broad-spectrum disease resistance by overexpression of the maize pathogenesis-related PRms protein in rice plants. Mol. Plant Microbe Interact. 2007, 20, 832–842. [Google Scholar] [CrossRef]
- Koyro, H.W.; Ahmad, P.; Geissler, N. Abiotic Stress Responses in Plants: An Overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer International Publishing: New York, NY, USA, 2012; pp. 1–28. [Google Scholar]
- Tegeder, M.; Rentsch, D. Uptake and partitioning of amino acids and peptides. Mol. Plant 2010, 3, 997–1011. [Google Scholar] [CrossRef]
- Chovanček, E.; Salazar, J.; Şirin, S.; Allahverdiyeva, Y. Microalgae from Nordic collections demonstrate biostimulant effect by enhancing plant growth and photosynthetic performance. Physiol. Plant. 2023, 175, e13911. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Kulkarni, M.G.; Stirk, W.A.; Staden, J.V. Eckol—A new plant growth stimulant from the brown seaweed Ecklonia maxima. J. Appl. Phycol. 2015, 27, 581–587. [Google Scholar] [CrossRef]
- Khan, F.; Tabassum, N.; Bamunuarachchi, N.I.; Kim, J.M. Phloroglucinol and Its Derivatives: Antimicrobial Properties toward Microbial Pathogens. J. Agric. Food Chem. 2022, 70, 4817–4838. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.L.S.; Araniti, F.; Ishii-Iwamoto, E.L.; Abenavoli, M.R. Resveratrol exerts beneficial effects on the growth and metabolism of Lactuca sativa L. Plant Pysiol. Biochem. 2022, 171, 26–37. [Google Scholar] [CrossRef]
- Tahjib-Ul-Arif, M.; Zahan, M.I.; Karim, M.M.; Imran, S.; Hunter, C.T.; Islam, M.S.; Mia, M.A.; Hannan, M.A.; Rhaman, M.S.; Hossain, M.A.; et al. Citric acid-mediated abiotic stress tolerance in plants. Int. J. Mol. Sci. 2021, 22, 7235. [Google Scholar] [CrossRef]
- El-Tohamy, W.; El-Abagy, H.; Badr, M.; Gruda, N. Drought tolerance and water status of bean plants (Phaseolus vulgaris L.) as affected by citric acid application. J. Appl. Bot. Food Qual. 2013, 86, 212–216. [Google Scholar] [CrossRef]
- Zanotti, R.F.; Lopes, J.C.; Motta, L.B.; de Freitas, A.R.; Mengarda, L.H.G. Tolerance induction to saline stress in papaya seeds treated with potassium nitrate and sildenafil citrate. Semin. Ciênc. Agrár. 2013, 34, 3669–3673. [Google Scholar] [CrossRef]
- El-Hawary, M.; Nashed, M.E. Effect of foliar application by some antioxidants on growth and productivity of maize under saline soil conditions. J. Plant Prod. 2019, 10, 93–99. [Google Scholar] [CrossRef]
- Araújo, L.; Gonçalves, A.E.; Stadnik, M.J. Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides. Phytoparasitica 2014, 42, 631–640. [Google Scholar] [CrossRef]
- Schmid, B.; Coelho, L.; Schulze, P.S.; Pereira, H.; Santos, T.; Maia, I.B.; Reis, M.; Varela, J. Antifungal properties of aqueous microalgal extracts. Bioresour. Technol. Rep. 2022, 18, 101096. [Google Scholar] [CrossRef]
- Kim, S.J.; Ko, E.J.; Hong, J.K.; Jeun, Y.C. Ultrastructures of Colletotrichum orbiculare in cucumber leaves expressing systemic acquired resistance mediated by Chlorella fusca. Plant Pathol. J. 2018, 34, 113–120. [Google Scholar] [CrossRef]
- Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, S.; Cagnin, S.; Pizzeghello, D.; Moliterni, V.M.C.; Mandolino, G.; et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 2018, 30, 1061–1071. [Google Scholar] [CrossRef]
- Iqbal, N.; Khan, N.A.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M.I.R. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Zheng, Y.; Wang, J.; Wang, Z.; Yang, Z.; Chi, X.; Dai, L.; Lu, G.; Yang, Y.; Sun, B. Ethylene-responsive SbWRKY50 suppresses leaf senescence by inhibition of chlorophyll degradation in sorghum. New Phytol. 2023, 238, 1129–1145. [Google Scholar] [CrossRef]
Species | Strain | Source | Abbreviation |
---|---|---|---|
Nannochloropsis oculata | CCMP525 | Bigelow National Center for Marine Algae and Microbiota (NCMA), Boothbay, ME, USA | No |
Tetraselmis tetrathele | - | Phytoplankton and Marine Microorganisms Ecology Laboratory at the Federal University of Rio Grande, Rio Grande, Brazil | Tt |
Phaeodactylum tricornutum | CCAP 1055/1 | Culture Collection of Algae and Protozoa, Scotland, UK | Pt |
Tetradesmus obliquus | LCA-01 | Laboratory of Algae Cultivation, Federal University of Santa Catarina, Florianopolis, Brazil | To |
Compost | Average Rt (min) | Average m/z | Post Curation Result | Formula | MS-FINDER Score | MS-DIAL Score | No | Pt | To | Tt |
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.524 | 217.0483 | Phloroglucinol derivative | C6H14O6 | - | - | 976 | 21 | 12 | 2709 |
2 | 0.526 | 233.0643 | Sedoheptulose | C7H14O7 | - | 94.4 | 79 | 7109 | 109 | 71 |
3 | 0.526 | 279.0569 | 2,5-Dimethyl-4-hydroxy-3(2H)-furanone | C6H8O3 | - | - | 31 | 2418 | 58 | 59 |
4 | 0.526 | 209.0663 | Monossacharide | C7H14O7 | - | 100 | 7 | 786 | 5 | 5 |
5 | 0.527 | 365.1056 | Dissacharide I | C12H22O11 | - | 84.3 | 508 | 494 | 8981 | 1495 |
6 | 0.535 | 236.1499 | Glyceryl-trimethylhomoserine | C10H21NO5 | - | 82.9 | 5055 | 310 | 2914 | 6285 |
7 | 0.538 | 205.069 | Galactitol | C6H14O6 | 8.2 | - | 7301 | 136 | 182 | 7212 |
8 | 0.55 | 118.0871 | Glycine betaine | C5H11NO2 | - | 85.8 | 7058 | 68,501 | 141 | 7614 |
9 | 0.551 | 138.0554 | 2-methyl-3-vinyl maleimide | C7H7NO2 | 6.57 | 81.3 | 50,750 | 3385 | 54 | 75,166 |
10 | 0.556 | 251.061 | Resveratrol | C14H12O3 | - | 99.9 | 909 | 70 | 70 | 2284 |
11 | 0.559 | 191.0192 | Citric acid | C6H8O7 | 5.3 | 100 | 56 | 2750 | 294 | 60 |
12 | 0.56 | 160.1334 | Aminovaleric acid betaine | C8H17NO2 | - | 64.5 | 4452 | 42 | 26 | 4789 |
13 | 0.563 | 387.1142 | Dissacharide II | C12H22O11 | 7.61 | 96.7 | 15 | 7 | 1726 | 36 |
14 | 3.318 | 217.1078 | (4S,5S,6E,8S,10R)-4,5,8-Trihydroxy-10-methyl-3,4,5,8,9,10-hexahydro-2H-oxecin-2-one | C10H16O5 | - | 99.9 | 7052 | 9065 | 3375 | 6587 |
15 | 11.267 | 415.2118 | Terpenoid II | C24H30O6 | - | 100 | 6163 | 6448 | 5102 | 5210 |
16 | 11.479 | 325.2377 | allo-Protolichesterinic acid | C19H32O4 | 5.07 | 100 | 119 | 4336 | 165 | 110 |
17 | 11.479 | 509.2704 | MGMG 16:3 | C25H42O9 | - | 100 | 12 | 3680 | 58 | 17 |
18 | 11.653 | 302.3056 | Sphinganine | C18H39NO2 | 8.02 | 88.3 | 25,145 | 24,398 | 24,353 | 4745 |
19 | 11.714 | 675.358 | DGMG 18:4 | C33H54O14 | - | - | 8 | 2306 | 30 | 57 |
20 | 11.944 | 520.3621 | LysoDGTSA 20:5 | C30H49NO6 | - | - | 172 | 2123 | 31 | 251 |
21 | 12.003 | 377.2681 | Diterpenoid | C23H36O4 | - | - | 23 | 2809 | 41 | 37 |
22 | 12.189 | 546.379 | LysoDGTS 22:6 | C32H51NO6 | - | - | 26 | 3354 | 34 | 28 |
23 | 12.225 | 353.1991 | Unkown | C19H30O6 | - | 99.4 | 700 | 287 | 236 | 210 |
24 | 12.232 | 555.2836 | SQMG(16:0/0:0) | C25H48O11S | 7 | - | 11 | 578 | 6 | 31 |
25 | 12.238 | 374.3637 | 21-aminodocosane-2,3,20-triol (aminolipid) | C22H47NO3 | - | 86.7 | 4625 | 3953 | 4271 | 845 |
26 | 12.247 | 568.341 | LysoPC 22:6 | C30H50NO7P | - | - | 14 | 2234 | 15 | 20 |
27 | 12.656 | 311.2012 | Dictyochromenol | C21H28O2 | 6.76 | 86.1 | 3697 | 1662 | 272 | 3670 |
28 | 13.097 | 637.3025 | Terpenoid II | C36H44O10 | - | 90.1 | 58 | 43 | 263 | 2334 |
29 | 13.294 | 815.494 | SQDG (18:3/16:0) | C43H76O12S | - | - | 6 | 27 | 1566 | 22 |
30 | 13.469 | 256.2647 | Palmitamide | C16H33NO | - | null | 117 | 93 | 2714 | 187 |
31 | 13.527 | 279.2317 | Linoleic acid | C18H32O2 | - | 100 | 157 | 154 | 244 | 656 |
32 | 13.766 | 981.5798 | DGDG (35:6) | C52H86O17 | - | - | 6 | 7 | 1178 | 55 |
Concentration (mg·mL−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Microalgae Species | 0.0 | 0.1 | 0.5 | 1.0 | 0.0 | 0.1 | 0.5 | 1.0 |
7 Dai * | 12 Dai | |||||||
Nannochloropsis oculata | 6.3 | 5.8 | 6.4 | 6.1 ns | 8.0 | 7.7 | 8.2 | 8.1 ns |
Phaeodactylum tricornutum | 8.2 | 7.2 | 7.3 | 7.0 ns | 8.5 | 8.1 | 8.4 | 8.1 ns |
Tetradesmus obliquus | 7.2 | 6.6 | 6.4 | 6.4 ns | 8.0 | 8.0 | 8.1 | 8.0 ns |
Tetraselmis tetrathele | 6.3 | 6.3 | 6.3 | 6.1 ns | 7.8 | 7.8 | 7.8 | 8.0 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.A.; Nader, C.; de Freitas, M.B.; Ribeiro, C.F.; Costa, G.d.O.; Sandjo, L.P.; Poltronieri, A.S.; Derner, R.B.; Stadnik, M.J. Chemical Profiling and Bioactivity of Microalgae Extracts for Enhancing Growth and Anthracnose Resistance in the Common Bean (Phaseolus vulgaris L.). BioTech 2025, 14, 17. https://doi.org/10.3390/biotech14010017
dos Santos AA, Nader C, de Freitas MB, Ribeiro CF, Costa GdO, Sandjo LP, Poltronieri AS, Derner RB, Stadnik MJ. Chemical Profiling and Bioactivity of Microalgae Extracts for Enhancing Growth and Anthracnose Resistance in the Common Bean (Phaseolus vulgaris L.). BioTech. 2025; 14(1):17. https://doi.org/10.3390/biotech14010017
Chicago/Turabian Styledos Santos, Alessandro A., Camila Nader, Mateus B. de Freitas, César F. Ribeiro, Geovanna de Oliveira Costa, Louis P. Sandjo, Alex S. Poltronieri, Roberto B. Derner, and Marciel J. Stadnik. 2025. "Chemical Profiling and Bioactivity of Microalgae Extracts for Enhancing Growth and Anthracnose Resistance in the Common Bean (Phaseolus vulgaris L.)" BioTech 14, no. 1: 17. https://doi.org/10.3390/biotech14010017
APA Styledos Santos, A. A., Nader, C., de Freitas, M. B., Ribeiro, C. F., Costa, G. d. O., Sandjo, L. P., Poltronieri, A. S., Derner, R. B., & Stadnik, M. J. (2025). Chemical Profiling and Bioactivity of Microalgae Extracts for Enhancing Growth and Anthracnose Resistance in the Common Bean (Phaseolus vulgaris L.). BioTech, 14(1), 17. https://doi.org/10.3390/biotech14010017