Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain
2.2. Experimental Design
2.3. Culture Conditions
2.4. Biomass Drying, C-PE Extraction, and Quantification
2.5. Process Optimization
3. Results
3.1. Effect of Multiple Variables on the Concentration and Purity of C-PE
3.2. Optimization of Relevant Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Factor A | Factor B | Factor C | Factor D | Factor E | Factor F | Response 1 | Response 2 | ||
---|---|---|---|---|---|---|---|---|---|
Std | Run | Biomass/Buffer Ratio (% w/v) | pH | Molarity (mM) | Extraction Time (min) | Extraction Speed (rpm) | Buffer | C-PE_Purity (Purity Index) | C-PE (% w/w) |
17 | 1 | 1 | 7.4 | 0.1 | 10 | 500 | Sodium phosphate | 0.7606 | 1.48095531 |
16 | 2 | 10 | 5.8 | 0.001 | 10 | 1500 | Potassium phosphate | 0.76680159 | 0.49353519 |
4 | 3 | 10 | 7.4 | 0.1 | 30 | 500 | Sodium phosphate | 0.74754367 | 0.98112929 |
9 | 4 | 10 | 5.8 | 0.1 | 10 | 500 | Sodium phosphate | 1.27514269 | 4.39665455 |
22 | 5 | 1 | 5.8 | 0.1 | 10 | 1500 | Potassium phosphate | 0.54055468 | 0.93936676 |
19 | 6 | 1 | 5.8 | 0.001 | 30 | 500 | Sodium phosphate | 1.12154758 | 3.91775927 |
5 | 7 | 1 | 7.4 | 0.001 | 30 | 500 | Potassium phosphate | 1.09045083 | 1.79881353 |
3 | 8 | 1 | 5.8 | 0.001 | 10 | 1500 | Sodium phosphate | 1.04191554 | 3.9589539 |
8 | 9 | 1 | 7.4 | 0.001 | 30 | 1500 | Sodium phosphate | 1.41099453 | 6.90128049 |
14 | 10 | 10 | 7.4 | 0.1 | 10 | 500 | Sodium phosphate | 1.16715 | 1.39814374 |
21 | 11 | 10 | 7.4 | 0.1 | 10 | 1500 | Sodium phosphate | 0.447544 | 0.98112929 |
11 | 12 | 10 | 5.8 | 0.001 | 30 | 1500 | Sodium phosphate | 1.83422485 | 1.23462747 |
2 | 13 | 10 | 7.4 | 0.001 | 10 | 500 | Sodium phosphate | 0.165782 | 0.37727198 |
18 | 14 | 1 | 5.8 | 0.001 | 10 | 500 | Sodium phosphate | 1.21558923 | 4.37041458 |
7 | 15 | 10 | 5.8 | 0.001 | 30 | 500 | Potassium phosphate | 0.84726926 | 1.13063171 |
15 | 16 | 1 | 5.8 | 0.1 | 30 | 1500 | Sodium phosphate | 1.79609 | 1.05074815 |
13 | 17 | 1 | 7.4 | 0.001 | 10 | 1500 | Potassium phosphate | 1.12034 | 4.21950129 |
6 | 18 | 10 | 7.4 | 0.1 | 10 | 500 | Potassium phosphate | 1.04725735 | 1.05317935 |
1 | 19 | 1 | 5.8 | 0.1 | 30 | 500 | Potassium phosphate | 0.68369843 | 1.86514947 |
20 | 20 | 1 | 7.4 | 0.1 | 30 | 1500 | Potassium phosphate | 0.87808136 | 2.47663117 |
10 | 21 | 10 | 5.8 | 0.1 | 30 | 1500 | Potassium phosphate | 2.45712 | 1.57674675 |
12 | 22 | 10 | 7.4 | 0.001 | 30 | 1500 | Potassium phosphate | 1.03431253 | 2.45301365 |
Factor A | Factor B | Factor C | Response 1 | Response 2 | |||
---|---|---|---|---|---|---|---|
Std | Block | Run | pH | Extraction Time (min) | Extraction Speed (rpm) | C-PE_Purity (Purity Index) | C-PE (% w/w) |
6 | Block 1 | 1 | 7.4 | 10 | 2000 | 1.18785 | 10.47209 |
4 | 2 | 7.4 | 50 | 1000 | 1.61976 | 9.55415 | |
7 | 3 | 5.8 | 50 | 2000 | 2.0816 | 8.49407 | |
9 | 4 | 6.6 | 30 | 1500 | 1.93423 | 11.0031 | |
10 | 5 | 6.6 | 30 | 1500 | 1.90554 | 11.09339 | |
1 | 6 | 5.8 | 10 | 1000 | 2.1911 | 7.9383 | |
2 | Block 2 | 7 | 7.4 | 10 | 1000 | 1.27555 | 8.021 |
12 | 8 | 6.6 | 30 | 1500 | 1.8204 | 11.0031 | |
5 | 9 | 5.8 | 10 | 2000 | 2.27758 | 8.67546 | |
3 | 10 | 5.8 | 50 | 1000 | 2.04976 | 11.91282 | |
8 | 11 | 7.4 | 50 | 2000 | 1.17745 | 8.42667 | |
11 | 12 | 6.6 | 30 | 1500 | 1.95816 | 11.09339 | |
16 | Block 3 | 13 | 6.6 | 63.64 | 1500 | 1.71559 | 8.92233 |
13 | 14 | 5.25 | 30 | 1500 | 2.46082 | 7.56443 | |
15 | 15 | 6.6 | −3.63 | 1500 | 1.6 | 7.63122 | |
14 | 16 | 7.95 | 30 | 1500 | 1.023975 | 7.44745 | |
19 | 17 | 6.6 | 30 | 1500 | 1.82696 | 11.0031 | |
17 | 18 | 6.6 | 30 | 659.10 | 1.65863 | 11.4593 | |
18 | 19 | 6.6 | 30 | 2340.90 | 1.5425 | 11.0417 | |
20 | 20 | 6.6 | 30 | 1500 | 1.8564 | 11.09339 |
References
- Datta, D.; Weiss, E.L.; Wangpraseurt, D.; Hild, E.; Chen, S.; Golden, J.W.; Golden, S.S.; Pokorski, J.K. Phenotypically Complex Living Materials Containing Engineered Cyanobacteria. Nat. Commun. 2023, 14, 4742. [Google Scholar] [CrossRef] [PubMed]
- Babele, P.K.; Srivastava, A.; Young, J.D. Metabolic Flux Phenotyping of Secondary Metabolism in Cyanobacteria. Trends Microbiol. 2023, 31, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Del Mondo, A.; Smerilli, A.; Corato, F.; Sansone, C.; Brunet, C. Biotechnological Response Curve of the Cyanobacterium Spirulina subsalsa to Light Energy Gradient. Biotechnol. Biofuels Bioprod. 2023, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Thajuddin, N.; Subramanian, G. Cyanobacterial Biodiversity and Potential Applications in Biotechnology. Curr. Sci. Assoc. 2005, 89, 47–57. [Google Scholar]
- Shrivastav, A.; Mishra, S.K.; Mishra, S. Polyhydroxyalkanoate (PHA) Synthesis by Spirulina subsalsa from Gujarat Coast of India. Int. J. Biol. Macromol. 2010, 46, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Nowruzi, B.; Jalil, B.S.; Metcalf, J.S. Antifungal Screening of Selenium Nanoparticles Biosynthesized by Microcystin-Producing Desmonostoc Alborizicum. BMC Biotechnol. 2023, 23, 41. [Google Scholar] [CrossRef]
- Alotaiby, S.; Zhao, X.; Boesch, C.; Sergeeva, N.N. Sustainable Approach towards Isolation of Photosynthetic Pigments from Spirulina and the Assessment of Their Prooxidant and Antioxidant Properties. Food Chem. 2024, 436, 137653. [Google Scholar] [CrossRef] [PubMed]
- Akmukhanova, N.R.; Leong, Y.K.; Seiilbek, S.N.; Konysbay, A.; Zayadan, B.K.; Sadvakasova, A.K.; Sarsekeyeva, F.K.; Bauenova, M.O.; Bolatkhan, K.; Alharby, H.F.; et al. Eco-Friendly Biopesticides Derived from CO2-Fixing Cyanobacteria. Environ. Res. 2023, 239, 117419. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of Nutrients and Pesticides from Agricultural Runoff Using Microalgae and Cyanobacteria. Water 2022, 14, 558. [Google Scholar] [CrossRef]
- Malairaj, S.; Muthu, S.; Gopal, V.B.; Perumal, P.; Ramasamy, R. Qualitative and Quantitative Determination of R-Phycoerythrin from Halymenia Floresia (Clemente) C. Agardh by Polyacrylamide Gel Using Electrophoretic Elution Technique. J. Chromatogr. A 2016, 1454, 120–126. [Google Scholar] [CrossRef]
- Xiao, C.; Guo, N.; Liang, Z.; Huang, Z.; Li, W.; Xie, M.; Zhao, F. Ultrafast Energy Transfer Dynamics in a Cyanobacterial Light-Harvesting Phycobilisome. Processes 2023, 11, 1656. [Google Scholar] [CrossRef]
- Adir, N. Elucidation of the Molecular Structures of Components of the Phycobilisome: Reconstructing a Giant. Photosynth. Res. 2005, 85, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, W.; Lei, J.; Chen, H.; Wang, Q. The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions. Int. J. Mol. Sci. 2023, 24, 9733. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, S.; Gong, X.; Zhao, M.; Fu, X.; Wang, L. Isolation, Purification and Characteristics of R-Phycoerythrin from a Marine Macroalga Heterosiphonia Japonica. Protein Expr. Purif. 2009, 64, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Liu, H. Cyanobacterial Phycobilisome Allostery as Revealed by Quantitative Mass Spectrometry. Biochemistry 2023, 62, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Sharma, R.; Raghavarao, K.S.M.S. Novel Adsorption Approach for the Enrichment of R-Phycoerythrin from Marine Macroalga Gelidium pusillum. Algal Res. 2022, 62, 102605. [Google Scholar] [CrossRef]
- Munier, M.; Dumay, J.; Morançais, M.; Jaouen, P.; Fleurence, J. Variation in the Biochemical Composition of the Edible Seaweed Grateloupia turuturu Yamada Harvested from Two Sampling Sites on the Brittany Coast (France): The Influence of Storage Method on the Extraction of the Seaweed Pigment r-Phycoerythrin. J. Chem. 2013, 2013, 568548. [Google Scholar] [CrossRef]
- Wyman, M.; Gregory, R.P.F.; Carr, N.G. Novel Role for Phycoerythrin in a Marine Cyanobacterium, Synechococcus Strain DC2. Science 1985, 230, 818–820. [Google Scholar] [CrossRef] [PubMed]
- Bryant, D.A. Phycoerythrocyanin and Phycoerythrin: Properties and Occurrence in Cyanobacteria. J. Gen. Microbiol. 1982, 128, 835–844. [Google Scholar] [CrossRef]
- McGregor, G.B.; Sendall, B.C. Potamosiphon Australiensis Gen. Nov., Sp Nov. (Oscillatoriales), a New Filamentous Cyanobacterium from Subtropical North-Eastern Australia. Phytotaxa 2019, 387, 77–93. [Google Scholar] [CrossRef]
- Vergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech 2023, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Thoisen, C.; Hansen, B.W.; Nielsen, S.L. A Simple and Fast Method for Extraction and Quantification of Cryptophyte Phycoerythrin. MethodsX 2017, 4, 209–213. [Google Scholar] [CrossRef]
- Tan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Noor Mazli, N.A.I.; Nazarudin, M.F.; Shaharuddin, N.A.; Katayama, T.; Ahmad, S.A. A Review on a Hidden Gem: Phycoerythrin from Blue-Green Algae. Mar. Drugs 2023, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Ropero, J.E.; Lidueñez-Ballesteros, V.S.; Rodríguez-Bohórquez, A.D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. The Effect of LEDs on Biomass and Phycobiliproteins Production in Thermotolerant Oscillatoria sp. Appl. Sci. 2022, 12, 11664. [Google Scholar] [CrossRef]
- Sudhakar, M.P.; Jagatheesan, A.; Perumal, K.; Arunkumar, K. Methods of Phycobiliprotein Extraction from Gracilaria crassa and Its Applications in Food Colourants. Algal Res. 2015, 8, 115–120. [Google Scholar] [CrossRef]
- Mittal, R.; Tavanandi, H.A.; Mantri, V.A.; Raghavarao, K.S.M.S. Ultrasound Assisted Methods for Enhanced Extraction of Phycobiliproteins from Marine Macro-Algae, Gelidium Pusillum (Rhodophyta). Ultrason. Sonochem. 2017, 38, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.; Raghavarao, K.S.M.S. Extraction of R-Phycoerythrin from Marine Macro-Algae, Gelidium pusillum, Employing Consortia of Enzymes. Algal Res. 2018, 34, 1–11. [Google Scholar] [CrossRef]
- Huschek, G.; Rawel, H.M.; Schweikert, T.; Henkel-Oberländer, J.; Sagu, S.T. Characterization and Optimization of Microwave-Assisted Extraction of B-Phycoerythrin from Porphyridium purpureum Using Response Surface Methodology and Doehlert Design. Bioresour. Technol. Rep. 2022, 19, 101212. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021, 10, 2164. [Google Scholar] [CrossRef]
- García, A.B.; Longo, E.; Murillo, M.C.; Bermejo, R. Using a B-Phycoerythrin Extract as a Natural Colorant: Application in Milk-Based Products. Molecules 2021, 26, 297. [Google Scholar] [CrossRef]
- Fleurence, O.G.J. Contribution of Electrophoresis of Red Algae Seaweeds (Gracilaria sp.) Used as Food Ingredients. Sci. Aliments 1995, 15, 43–48. [Google Scholar]
- Munier, M.; Jubeau, S.; Wijaya, A.; Morançais, M.; Dumay, J.; Marchal, L.; Jaouen, P.; Fleurence, J. Physicochemical Factors Affecting the Stability of Two Pigments: R-Phycoerythrin of Grateloupia turuturu and B-Phycoerythrin of Porphyridium cruentum. Food Chem. 2014, 150, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Galland-Irmouli, A.V.; Pons, L.; Luçon, M.; Villaume, C.; Mrabet, N.T.; Guéant, J.L.; Fleurence, J. One-Step Purification of R-Phycoerythrin from the Red Macroalga Palmaria palmata Using Preparative Polyacrylamide Gel Electrophoresis. J. Chromatogr. B Biomed. Sci. Appl. 2000, 739, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Senthilkumar, N.; Kurinjimalar, C.; Thangam, R.; Suresh, V.; Kavitha, G.; Gunasekaran, P.; Rengasamy, R. Further Studies and Biological Activities of Macromolecular Protein R-Phycoerythrin from Portieria hornemannii. Int. J. Biol. Macromol. 2013, 62, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Le Guillard, C.; Dumay, J.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.Y.; Fleurence, J.; Bergé, J.P. Ultrasound-Assisted Extraction of R-Phycoerythrin from Grateloupia turuturu with and without Enzyme Addition. Algal Res. 2015, 12, 522–528. [Google Scholar] [CrossRef]
- Harnedy, P.A.; FitzGerald, R.J. Extraction of Protein from the Macroalga Palmaria palmata. LWT-Food Sci. Technol. 2013, 51, 375–382. [Google Scholar] [CrossRef]
- Andersen, R.; Berges, J.; Harrison, P.; Watanabe, M. Recipes for Freshwater and Seawater Media. In Algal Culture Techniques, 1st ed.; Elsevier: London, UK, 2005. [Google Scholar]
- Barajas-Solano, A.F. Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria sp. Processes 2022, 10, 836. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Patil, G.; Raghavarao, K.S.M.S. Aqueous Two Phase Extraction for Purification of C-Phycocyanin. Biochem. Eng. J. 2007, 34, 156–164. [Google Scholar] [CrossRef]
- Antelo, F.; Anschau, A.; Costa, J.; Kalil, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. J. Braz. Chem. Soc. 2010, 21, 921–926. [Google Scholar] [CrossRef]
- Xie, J.; Chen, S.; Wen, Z. Effects of Light Intensity on the Production of Phycoerythrin and Polyunsaturated Fatty Acid by Microalga Rhodomonas salina. Algal Res. 2021, 58, 102397. [Google Scholar] [CrossRef]
- Lee, M.-C.; Yeh, H.-Y.; Jhang, F.-J.; Lee, P.-T.; Lin, Y.-K.; Nan, F.-H. Enhancing Growth, Phycoerythrin Production, and Pigment Composition in the Red Alga Colaconema sp. Through Optimal Environmental Conditions in an Indoor System. Bioresour. Technol. 2021, 333, 125199. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira platensis. Algal Res. 2018, 31, 239–251. [Google Scholar] [CrossRef]
- Sukwong, P.; Sunwoo, I.Y.; Nguyen, T.H.; Jeong, G.-T.; Kim, S.-K. R-Phycoerythrin, R-Phycocyanin and ABE Production from Gelidium amansii by Clostridium acetobutylicum. Process Biochem. 2019, 81, 139–147. [Google Scholar] [CrossRef]
- Ji, L.; Liu, Y.; Luo, J.; Fan, J. Freeze-Thaw-Assisted Aqueous Two-Phase System as a Green and Low-Cost Option for Analytical Grade B-Phycoerythrin Production from Unicellular Microalgae Porphyridium purpureum. Algal Res. 2022, 67, 102831. [Google Scholar] [CrossRef]
- Pez Jaeschke, D.; Rocha Teixeira, I.; Damasceno Ferreira Marczak, L.; Domeneghini Mercali, G. Phycocyanin from Spirulina: A Review of Extraction Methods and Stability. Food Res. Int. 2021, 143, 110314. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Ng, I.-S. Production, Isolation and Characterization of C-Phycocyanin from a New Halo-Tolerant Cyanobacterium aponinum Using Seawater. Bioresour. Technol. 2021, 342, 125946. [Google Scholar] [CrossRef]
- Ghosh, T.; Mishra, S. Studies on Extraction and Stability of C-Phycoerythrin from a Marine Cyanobacterium. Front. Sustain. Food Syst. 2020, 4, 102. [Google Scholar] [CrossRef]
- Basheva, D.; Moten, D.; Stoyanov, P.; Belkinova, D.; Mladenov, R.; Teneva, I. Content of Phycoerythrin, Phycocyanin, Alophycocyanin and Phycoerythrocyanin in Some Cyanobacterial Strains: Applications. Eng. Life Sci. 2018, 18, 861–866. [Google Scholar] [CrossRef]
- Hemlata; Afreen, S.; Fatma, T. Extraction, Purification and Characterization of Phycoerythrin from Michrochaete and Its Biological Activities. Biocatal. Agric. Biotechnol. 2018, 13, 84–89. [Google Scholar] [CrossRef]
- Ismail, M.M.; El-Fakharany, E.M.; Hegazy, G.E. Purification and Fractionation of Phycobiliproteins from Arthrospira platensis and Corallina officinalis with Evaluating Their Biological Activities. Sci. Rep. 2023, 13, 14270. [Google Scholar] [CrossRef] [PubMed]
Coded Name | Variables | Units | Type | Low Level (−1) | High Level (+1) |
---|---|---|---|---|---|
A | Biomass/buffer ratio | % w/v | Numeric | 1 | 10 |
B | pH | pH | 5.8 | 7.40 | |
C | Molarity | mM | 0.0010 | 0.10 | |
D | Extraction time | min | 10 | 30 | |
E | Extraction speed | rpm | 500 | 1500 | |
F | Buffer | Categoric | Na2HPO4·7H2O-NaH2PO4·H2O | K2HPO4-KH2PO4 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|
Model | 6.42 | 9 | 0.7134 | 21.13 | <0.0001 * | ||
A-Biomass/buffer ratio | 1.46 | 1 | 1.46 | 43.25 | <0.0001 * | ||
B-pH | 0.1989 | 1 | 0.1989 | 5.89 | 0.0319 * | ||
C-Molarity | 0.1729 | 1 | 0.1729 | 5.12 | 0.0430 * | ||
D-Extraction time | 0.0507 | 1 | 0.0507 | 1.50 | 0.2442 ** | ||
E-Extraction speed | 0.0391 | 1 | 0.0391 | 1.16 | 0.3028 ** | ||
AC | 1.61 | 1 | 1.61 | 47.69 | <0.0001 * | ||
BE | 1.34 | 1 | 1.34 | 39.74 | <0.0001 * | ||
CE | 0.5514 | 1 | 0.5514 | 16.33 | 0.0016 * | ||
DE | 0.5977 | 1 | 0.5977 | 17.70 | 0.0012 * | ||
Residual | 0.4052 | 12 | 0.0338 | ||||
Cor Total | 6.83 | 21 | |||||
R2 | Adj R2 | Pred R2 | Adq Pr | Std. Dev. | Mean | C.V. % | |
0.9406 | 0.8961 | 0.7798 | 17.4849 | 0.1838 | 0.8436 | 21.78 |
Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|
Model | 5.20 | 13 | 0.4003 | 78.92 | <0.0001 * | ||
A-Biomass/buffer ratio | 0.0593 | 1 | 0.0593 | 11.68 | 0.0091 * | ||
B-pH | 1.25 | 1 | 1.25 | 247.07 | <0.0001 * | ||
C-Molarity | 0.0012 | 1 | 0.0012 | 0.2275 | 0.6461 ** | ||
D-Extraction time | 1.09 | 1 | 1.09 | 214.75 | <0.0001 * | ||
E-Extraction speed | 0.5725 | 1 | 0.5725 | 112.85 | <0.0001 * | ||
F-Buffer | 0.1301 | 1 | 0.1301 | 25.65 | 0.0010 * | ||
AB | 0.0953 | 1 | 0.0953 | 18.78 | 0.0025 * | ||
AC | 1.75 | 1 | 1.75 | 344.27 | <0.0001 * | ||
BD | 0.3451 | 1 | 0.3451 | 68.03 | <0.0001 * | ||
BE | 0.3432 | 1 | 0.3432 | 67.66 | <0.0001 * | ||
CE | 0.0747 | 1 | 0.0747 | 14.72 | 0.0050 * | ||
CF | 0.1870 | 1 | 0.1870 | 36.86 | 0.0003 * | ||
DE | 1.47 | 1 | 1.47 | 289.59 | <0.0001 * | ||
Residual | 0.0406 | 8 | 0.0051 | ||||
Cor Total | 5.24 | 21 | |||||
R2 | Adj R2 | Pred R2 | Adq Pr | Std. Dev. | Mean | C.V. % | |
0.9923 | 0.9797 | 0.9327 | 40.0111 | 0.0712 | 1.07 | 6.68 |
Coded Name | Variables | Units | Low Level (−1) | Center Point (0) | High Level (+1) |
---|---|---|---|---|---|
A | pH | pH | 5.25 | 6.6 | 7.95 |
B | Extraction time | min | −3.64 | 30 | 63.64 |
C | Extraction speed | rpm | 659.10 | 1500 | 2340 |
Response | Source | Sum of Squares | Df | Mean Square | F-Value | p-Value | ||
---|---|---|---|---|---|---|---|---|
C-PE (% w/w) | Block | 0.4230 | 2 | 0.2115 | ||||
Model | 45.35 | 9 | 5.04 | 339.73 | <0.0001 * | |||
A-pH | 0.0405 | 1 | 0.0405 | 2.73 | 0.1372 ** | |||
B-Extraction time | 2.18 | 1 | 2.18 | 146.75 | <0.0001 * | |||
C-Extraction speed | 0.3108 | 1 | 0.3108 | 20.95 | 0.0018 * | |||
AB | 2.32 | 1 | 2.32 | 156.21 | <0.0001 * | |||
AC | 2.01 | 1 | 2.01 | 135.19 | <0.0001 * | |||
BC | 7.48 | 1 | 7.48 | 504.14 | <0.0001 * | |||
A2 | 20.25 | 1 | 20.25 | 1365.26 | <0.0001 * | |||
B2 | 12.01 | 1 | 12.01 | 809.86 | <0.0001 * | |||
C2 | 0.2743 | 1 | 0.2743 | 18.49 | 0.0026 * | |||
Residual | 0.1187 | 8 | 0.0148 | |||||
Lack of Fit | 0.1064 | 5 | 0.0213 | 5.22 | 0.1021 ** | |||
Pure Error | 0.0122 | 3 | 0.0041 | |||||
Cor Total | 45.89 | 19 | ||||||
R2 | Adj R2 | Pred R2 | Adq Pr | Std. Dev. | Mean | C.V. % | ||
0.9974 | 0.9945 | 0.9830 | 46.1151 | 0.1218 | 9.69 | 1.26 | ||
C-PE (% w/w) | Block | 0.0811 | 2 | 0.0406 | ||||
Model | 2.32 | 3 | 0.7730 | 53.46 | <0.0001 * | |||
A-pH | 2.26 | 1 | 2.26 | 156.32 | <0.0001 * | |||
B-Extraction time | 0.0112 | 1 | 0.0112 | 0.7738 | 0.3939 ** | |||
C-Extraction speed | 0.0477 | 1 | 0.0477 | 3.30 | 0.0908 * | |||
Residual | 0.2024 | 14 | 0.0145 | |||||
Lack of Fit | 0.1672 | 11 | 0.0152 | 1.29 | 0.4668 ** | |||
Pure Error | 0.0352 | 3 | 0.0117 | |||||
Cor Total | 2.60 | 19 | ||||||
R2 | Adj R2 | Pred R2 | Adq Pr | Std. Dev. | Mean | C.V. % | ||
0.9197 | 0.9025 | 0.8389 | 20.7767 | 0.1202 | 1.73 | 6.96 |
Coded Name | Variables | Units | Value |
---|---|---|---|
A | pH | pH | 5.8 |
B | Extraction time | min | 50 |
C | Extraction speed | rpm | 1000 |
Z1 | C-PE | w/w | 11.6 |
Z2 | Purity Index | 2.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Urbina-Suarez, N.A.; Barajas-Solano, A.F. Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. BioTech 2024, 13, 21. https://doi.org/10.3390/biotech13030021
Vergel-Suarez AH, García-Martínez JB, López-Barrera GL, Urbina-Suarez NA, Barajas-Solano AF. Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. BioTech. 2024; 13(3):21. https://doi.org/10.3390/biotech13030021
Chicago/Turabian StyleVergel-Suarez, Ariadna H., Janet B. García-Martínez, German L. López-Barrera, Néstor A. Urbina-Suarez, and Andrés F. Barajas-Solano. 2024. "Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria" BioTech 13, no. 3: 21. https://doi.org/10.3390/biotech13030021
APA StyleVergel-Suarez, A. H., García-Martínez, J. B., López-Barrera, G. L., Urbina-Suarez, N. A., & Barajas-Solano, A. F. (2024). Influence of Critical Parameters on the Extraction of Concentrated C-PE from Thermotolerant Cyanobacteria. BioTech, 13(3), 21. https://doi.org/10.3390/biotech13030021