Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Extraction
2.2. Analysis of Extracts Using Gas Chromatography-Mass Spectrometry (GC-MS)
2.3. Preparation of Ligands and SARS-CoV-2 PLpro
2.4. Pharmacophore-Based Virtual Screening
2.5. Molecular Docking
2.6. Docking Validation and Ligand Efficiency
2.7. Molecular Dynamics
3. Results
3.1. GC/MS
3.2. Identification of 3D-Pharmacophore
3.3. SARS-CoV-2 Enzyme Docking PLpro
3.4. SARS-CoV-2 Enzyme Molecular Dynamics PLpro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M.; Sami, H. Molecular modelling studies unveil potential binding sites on human serum albumin for selected experimental and in silico COVID-19 drug candidate molecules. Saudi J. Biol. Sci. 2022, 29, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, S.; Kottekad, S.; Crasta, I.; Sreevathsan, S.; Usharani, D.; Perumal, M.K.; Mudliar, S.N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants—Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy)—A molecular docking and simulation study. Comput. Biol. Med. 2021, 136, 104683. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.; Mohapatra, R.K.; Sarangi, A.K.; Mohapatra, P.K.; Eltayb, W.A.; Alam, M.; El-Arabey, A.A.; Azam, M.; Al-Resayes, S.I.; Seidel, V.; et al. In Silico studies on phytochemicals to combat the emerging COVID-19 infection. J. Saudi Chem. Soc. 2021, 25, 101367. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, M.; Yang, J. Potential value of circulating endothelial cells for the diagnosis and treatment of COVID-19. Int. J. Infect. Dis. 2021, 107, 232–233. [Google Scholar] [CrossRef] [PubMed]
- Bharath Kumar, G.; Zhou, M.-M. Calming the cytokine storm of COVID-19 through inhibition of JAK2/STAT3 signaling. Drug Discov. Today 2021, 27, 390–400. [Google Scholar] [CrossRef]
- Sibilio, P.; Bini, S.; Fiscon, G.; Sponziello, M.; Conte, F.; Pecce, V.; Durante, C.; Paci, P.; Falcone, R.; Norata, G.D.; et al. In Silico drug repurposing in COVID-19: A network-based analysis. Biomed. Pharmacother. 2021, 142, 111954. [Google Scholar] [CrossRef]
- De, P.; Chakraborty, I.; Karna, B.; Mazumder, N. Brief review on repurposed drugs and vaccines for possible treatment of COVID-19. Eur. J. Pharmacol. 2021, 898, 173977. [Google Scholar] [CrossRef]
- Acquavia, M.A.; Foti, L.; Pascale, R.; Nicolò, A.; Brancaleone, V.; Cataldi, T.R.I.; Martelli, G.; Scrano, L.; Bianco, G. Detection and quantification of COVID-19 antiviral drugs in biological fluids and tissues. Talanta 2021, 224, 121862. [Google Scholar] [CrossRef]
- Chung, J.Y.; Thone, M.N.; Kwon, Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv. Drug Deliv. Rev. 2021, 170, 1–25. [Google Scholar] [CrossRef]
- Almazrou, S.H.; Almalki, Z.S.; Alanazi, A.S.; Alqahtani, A.M.; Alghamd, S.M. Comparing the impact of Hydroxychloroquine based regimens and standard treatment on COVID-19 patient outcomes: A retrospective cohort study. Saudi Pharm. J. 2020, 28, 1877–1882. [Google Scholar] [CrossRef]
- Liu, T.; Luo, S.; Libby, P.; Shi, G.P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol. Ther. 2020, 213, 107587. [Google Scholar] [CrossRef] [PubMed]
- Casertano, M.; Menna, M.; Imperatore, C. The ascidian-derived metabolites with antimicrobial properties. Antibiotics 2020, 9, 510. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2023, 40, 275–325. [Google Scholar] [CrossRef] [PubMed]
- Verma, D.; Mitra, D.; Paul, M.; Chaudhary, P.; Kamboj, A.; Thatoi, H.; Janmeda, P.; Jain, D.; Panneerselvam, P.; Shrivastav, R.; et al. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: Molecular docking and simulation studies of three pertinent medicinal plant natural components. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100038. [Google Scholar] [CrossRef]
- Rafiqul Islam, A.T.M.; Ferdousi, J.; Shahinozzaman, M. Previously published ethno-pharmacological reports reveal the potentiality of plants and plant-derived products used as traditional home remedies by Bangladeshi COVID-19 patients to combat SARS-CoV-2. Saudi J. Biol. Sci. 2021, 28, 6653–6673. [Google Scholar] [CrossRef]
- Gupta, S.S.; Kumar, A.; Shankar, R.; Sharma, U. In Silico approach for identifying natural lead molecules against SARS-COV-2. J. Mol. Graph. Model. 2021, 106, 107916. [Google Scholar] [CrossRef]
- Ali, A.; Sepay, N.; Afzal, M.; Sepay, N.; Alarifi, A.; Shahid, M.; Ahmad, M. Molecular designing, crystal structure determination and in silico screening of copper(II) complexes bearing 8-hydroxyquinoline derivatives as anti-COVID-19. Bioorg. Chem. 2021, 110, 104772. [Google Scholar] [CrossRef]
- Tassakka, A.C.M.A.R.; Sumule, O.; Massi, M.N.; Sulfahri; Manggau, M.; Iskandar, I.W.; Alam, J.F.; Permana, A.D.; Liao, L.M. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta)—A computational study. Arab. J. Chem. 2021, 14, 103393. [Google Scholar] [CrossRef]
- Rifai, A.; Soekamto, N.H. Purification and Analysis of Patchouli Alcohol from Patchouli Oil by Vacuum Fractionation Distillation. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1341, p. 052016. [Google Scholar]
- Shivanika, C.; Kumar, D.; Ragunathan, V.; Tiwari, P.; Sumitha, A. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 2020, 40, 585–611. [Google Scholar] [CrossRef]
- Schultes, S.; De Graaf, C.; Haaksma, E.E.J.; De Esch, I.J.P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today Technol. 2010, 7, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Gurusmatika, S.; Amira, W. The effect of food additive on physicochemical characteristics of seaweed stick snack and consumer acceptance. Canrea J. Food Technol. Nutr. Culin. J. 2021, 102–113. [Google Scholar] [CrossRef]
- Lomartire, S.; Marques, J.C.; Gonçalves, A.M.M. An Overview to the Health Benefits of Seaweeds Consumption. Mar. Drugs 2021, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- Murai, U.; Yamagishi, K. Impact of seaweed intake on health. Eur. J. Clin. Nutr. 2021, 75, 877–889. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, Y.; Wu, K.; Yan, H.; Hao, X.; Wu, Y. Application of fatty acids as antiviral agents against tobacco mosaic virus. Pestic. Biochem. Physiol. 2017, 139, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Goc, A.; Niedzwiecki, A.; Rath, M. Polyunsaturated ω-3 fatty acids inhibit ACE2-controlled SARS-CoV-2 binding and cellular entry. Sci. Rep. 2021, 11, 5207. [Google Scholar] [CrossRef]
- Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; et al. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun. 2021, 12, 743. [Google Scholar] [CrossRef]
- Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.; Tascher, G.; et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662. [Google Scholar] [CrossRef]
- Ma, C.; Sacco, M.D.; Xia, Z.; Lambrinidis, G.; Townsend, J.A.; Hu, Y.; Meng, X.; Szeto, T.; Ba, M.; Zhang, X.; et al. Discovery of SARS-CoV-2 Papain-like Protease Inhibitors through a Combination of High-Throughput Screening and a FlipGFP-Based Reporter Assay. ACS Cent. Sci. 2021, 7, 1245–1260. [Google Scholar] [CrossRef]
- Bharathi, M.; Sivamaruthi, B.S.; Kesika, P.; Thangaleela, S.; Chaiyasut, C. In Silico Screening of Bioactive Compounds of Representative Seaweeds to Inhibit SARS-CoV-2 ACE2-Bound Omicron B.1.1.529 Spike Protein Trimer. Mar. Drugs 2022, 20, 148. [Google Scholar] [CrossRef]
- Adeniyi, A.A.; Ajibade, P.A. Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru(II)-based complexes as anticancer agents. Molecules 2013, 18, 3760–3778. [Google Scholar] [CrossRef] [Green Version]
No | Compounds | Smiles | PubChem ID | Area% |
---|---|---|---|---|
1 | 1,2-benzenedicarboxylic Acid | CC(C)CCCCCC1=C(C(=C(C=C1)C(=O)O)C(=O)O)CCCCCC(C)C | 18972250 | 2.05 |
2 | 1,3,5-triazine-2,4-diamine, 6-chloro-n-ethyl | CCNC1=NC(=NC(=N1)N)Cl | 13878 | 12.85 |
3 | 1,3-dioxane, 4,6-dimethyl-. | CC1CC(OCO1)C | 136893 | 5 |
4 | 1,6-octadien-3-ol, 3,7-dimethyl | CC(=CCCC(C)(C=C)O)C | 6549 | 2.31 |
5 | 1-decanol | CCCCCCCCCCO | 154477145 | 2.4 |
6 | 9-octadecenoic Acid (Z)- | CCCCCCCCC=CCCCCCCCC=O | 17029 | 3.11 |
7 | Azulene | CC1CCC2=C(CCC(CC12)C(=C)C)C | 520,826 | 2.07 |
8 | Cholest-5-en-3-ol (3.Beta.)- | CC(C)CCCC(C)C1CCC2C1(CCC3C2CC=C4C3(CCC(C4)O)C)C | 5997 | 1.51 |
9 | Cyclohexasiloxane, Dodecamethyl- | C[Si]1(O[Si](O[Si](O[Si](O[Si](O[Si](O1)(C)C)(C)C)(C)C)(C)C)(C)C)C | 10911 | 0.99 |
10 | Dotriacontane | CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC | 11,008 | 7.9 |
11 | Heneicosane, 11-cyclopentyl | CCCCCCCCCCC(CCCCCCCCCC)C1CCCC1 | 23170 | 2.6 |
12 | Hexadecanoic Acid | CCCCCCCCCCCCCCCC(=O)O | 985 | 6.66 |
13 | Loliolide | CC1(CC(CC2(C1=CC(=O)O2)C)O)C | 14334 | 1.05 |
14 | Methenamine | C1N2CN3CN1CN(C2)C3 | 4101 | 6.73 |
15 | Neophytadiene | CC(C)CCCC(C)CCCC(C)CCCC(=C)C=C | 10446 | 3.1 |
16 | N-formylmorpholine | C1COCCN1C=O | 20417 | 1.59 |
17 | Octadecanoic Acid, Methyl Ester | CCCCCCCCCCCCCCCCCC(=O)OC | 8201 | 1.3 |
Protein | Molecular Docking Scores | ||||||
---|---|---|---|---|---|---|---|
PLpro | Compound | Snyder 457 | Cholesterol | Azulene | 1,2 Benzenedicar-boxylic acid | 9-octadecenoic acid (Z) | Hexadecanoic acid |
AutoDock | −10 | −6.5 | −6.5 | −6 | −5.5 | −5.4 | |
HA | 23 | 28 | 15 | 28 | 19 | 18 | |
LE | −0.43 | −0.23 | −0.43 | −0.21 | −0.29 | −0.30 |
Protein | Molecular Docking Scores | ||||||
---|---|---|---|---|---|---|---|
PLpro | Compound | Synder457 | Heneicosane, 11-cyclopentyl | Neophytadiene | Octadecanoic Acid, Methyl Ester | 9-octadecenoic acid (Z) | Cholesterol |
GOLD | 42.04 | 39.08 | 31.54 | 29.91 | 29.16 | 28.78 |
Parameters | PLpro-Cholesterol | Plpro-Snyder 457 | Apo System |
---|---|---|---|
RMSD (nm) | 0.15 | 0.14 | 0.15 |
RMSF (nm) | 0.12 | 0.15 | 0.1 |
Rg (nm) | 2.34 | 2.37 | 2.37 |
Ligand | ΔGvdw | ΔGelec. | ΔGpolar | ΔGsurf | ΔGMM/PBSA |
---|---|---|---|---|---|
Cholesterol | −27.58 | −1.03 | 7.71 | −3.44 | −20.91 |
Snyder 457 | −34.48 | −34.41 | 38.23 | −4.49 | −30.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassakka, A.C.M.A.R.; Iskandar, I.W.; Alam, J.F.; Permana, A.D.; Massi, M.N.; Sulfahri; Jompa, J.; Liao, L.M. Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2. BioTech 2023, 12, 46. https://doi.org/10.3390/biotech12020046
Tassakka ACMAR, Iskandar IW, Alam JF, Permana AD, Massi MN, Sulfahri, Jompa J, Liao LM. Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2. BioTech. 2023; 12(2):46. https://doi.org/10.3390/biotech12020046
Chicago/Turabian StyleTassakka, Asmi Citra Malina A. R., Israini Wiyulanda Iskandar, Jamaluddin Fitrah Alam, Andi Dian Permana, Muhammad Nasrum Massi, Sulfahri, Jamaluddin Jompa, and Lawrence Manzano Liao. 2023. "Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2" BioTech 12, no. 2: 46. https://doi.org/10.3390/biotech12020046
APA StyleTassakka, A. C. M. A. R., Iskandar, I. W., Alam, J. F., Permana, A. D., Massi, M. N., Sulfahri, Jompa, J., & Liao, L. M. (2023). Docking Studies and Molecular Dynamics Simulations of Potential Inhibitors from the Brown Seaweed Sargassum polycystum (Phaeophyceae) against PLpro of SARS-CoV-2. BioTech, 12(2), 46. https://doi.org/10.3390/biotech12020046