Development of Targeted Protein-Displaying Technology with a Novel Carbon Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Carbon Material
2.2. Analyses for Structural Properties of Carbon Material
2.3. Analysis for the Activity of Horseradish Peroxidase on Carbon Material
3. Results
3.1. Properties of Carbon Material
3.2. HRP-Activity on Carbon Material
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mir Khan, U.; Selamoglu, Z. Use of enzymes in dairy industry: A review of current progress. Arch. Razi. Inst. 2020, 75, 131–136. [Google Scholar]
- Alderson, R.G.; Ferrari, L.D.; Mavridis, L.; McDonagh, J.L.; Mitchell, J.B.O.; Nath, N. Enzyme informatics. Curr. Top. Med. Chem. 2012, 12, 1911–1923. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, S.; Parameswaran, B.; Ummalyma, S.B.; Abraham, A.; Mathew, A.K.; Madhavan, A.; Rebello, S.; Pandey, A. Applications of microbial enzymes in food industry. Food Technol. Biotechnol. 2018, 56, 16–30. [Google Scholar] [CrossRef] [PubMed]
- England, C.G.; Ehlerding, E.B.; Cai, W. NanoLuc: A small luciferase is brightening up the field of bioluminescence. Bioconjug. Chem. 2016, 27, 1175–1187. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.L.; Rajput, M.; Oza, T.; Trivedi, U.; Sanghvi, G. Eminence of microbial products in cosmetic industry. Nat. Prod. Bioprospect. 2019, 9, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Shih, J.; Swaisgood, H.E. Hydrolysis of feather keratin by immobilized keratinase. Appl. Environ. Microbiol. 1996, 62, 4273–4275. [Google Scholar] [CrossRef] [Green Version]
- Pati, S.; Quinto, M.; Palmisano, F. Flow injection determination of choline in milk hydrolysates by an immobilized enzyme reactor coupled to a selective hydrogen peroxide amperometric sensor. Anal. Chim. Acta 2007, 594, 234–239. [Google Scholar] [CrossRef]
- Tang, W.; Jia, B.; Zhou, J.; Liu, J.; Wang, J.; Ma, D.; Li, P.; Chen, J. A method using angiotensin converting enzyme immobilized on magnetic beads for inhibitor screening. J. Pharm. Biomed. Anal. 2019, 164, 223–230. [Google Scholar] [CrossRef]
- Shibasaki, S.; Maeda, H.; Ueda, M. Molecular display technology using yeast—Arming technology—. Anal. Sci. 2009, 25, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, A.; Bae, J.G.; Fukai, K.; Tokumoto, N.; Kuroda, K.; Ogawa, J.; Nakatani, M.; Shimizu, S.; Ueda, M. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation. Appl. Microbiol. Biotechnol. 2012, 94, 939–948. [Google Scholar] [CrossRef]
- Hensley, K. Detection of protein carbonyls by means of biotin hydrazide-streptavidin affinity methods. Methods Mol. Biol. 2015, 1314, 95–100. [Google Scholar]
- Guesdon, J.L.; Ternynck, T.; Avrameas, S. The use of avidin-biotin interaction in immunoenzymatic techniques. J. Histochem. Cytochem. 1979, 27, 1131–1139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilchek, M.; Bayer, E.A. Introduction to avidin-biotin technology. Methods Enzymol. 1990, 184, 5–13. [Google Scholar] [PubMed]
- Green, N.M. The nature of the biotin-binding site. Biochem. J. 1963, 89, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Morawski, B.; Lin, Z.; Cirino, P.; Joo, H.; Bandara, G.; Arnold, F.H. Functional expression of horseradish peroxidase in Saccharomyces cerevisiae and Pichia pastoris. Protein Eng. Des. Sel. 2000, 13, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Boehm, H.P. Chemical identification of surface groups. Adv. Catal. 1966, 16, 179–274. [Google Scholar]
- Wu, J.; Luo, X.; Jing, S.; Yan, L.J. Two-dimensional gel electrophoretic detection of protein carbonyls derivatized with biotin-hydrazide. J. Chromatogr. B 2016, 1019, 128–131. [Google Scholar] [CrossRef] [Green Version]
- Visintin, A.; Latz, E.; Monks, B.G.; Espevik, T.; Golenbock, D.T. Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction. J. Biol. Chem. 2003, 278, 48313–48320. [Google Scholar] [CrossRef] [Green Version]
- Morhardt, C.; Ketterer, B.; Heißler, S.; Franzreb, M. Direct quantification of immobilized enzymes by means of FTIR ATR spectroscopy—A process analytics tool for biotransformations applying non-porous magnetic enzyme carriers. J. Mol. Catal. B Enzym. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Tiba, T.; Omori, H.; Takeda, Y. The reaction of carboxylic acid hydrazides with acids. Hokkaido Univ. Collect. Sch. Acad. Pap. (HUSCAP) 1971, 61, 63–68. [Google Scholar]
- Sato, T. Production of Adipic Acid Dihydrazide. JP Patent 09,255,644, 30 September 1997. [Google Scholar]
- Tatsumoto, H. New Ways to Use Wood Charcoal: Types and Characteristics of Wood Charcoal; Japan Charcoal and Fuel Association: Tokyo, Japan, 2004; pp. 9–13. [Google Scholar]
- Beck, J.S.; Vartuli, J.C. Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves. Curr. Opin. Solid State Mater. Sci. 1996, 1, 76–87. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Chen, C.C.; Do, J.S.; Gu, Y. Immobilization of HRP in mesoporous silica and its application for the construction of polyaniline modified hydrogen peroxide biosensor. Sensors 2009, 9, 4635–4648. [Google Scholar] [CrossRef] [Green Version]
- Katiyar, A.; Ji, L.; Smirniotis, P.; Pinto, N.G. Protein adsorption on the mesoporous molecular sieve silicate SBA-15: Effects of pH and pore size. J. Chromatogr. A 2005, 1069, 119–126. [Google Scholar] [CrossRef]
- Nakanishi, A.; Aikawa, S.; Ho, S.H.; Chen, C.Y.; Chang, J.S.; Hasunuma, T.; Kondo, A. Development of lipid productivities under different CO2 conditions of marine microalgae Chlamydomonas sp. JSC4. Bioresour. Technol. 2014, 152, 247–252. [Google Scholar] [CrossRef]
- Abe, I.; Iwasaki, S.; Iwata, Y.; Kominami, H.; Kera, Y. Relationship between production method and adsorption property of char. Tanso 1998, 185, 277–284. [Google Scholar] [CrossRef]
- Thermo-Fisher Scientific. Catalog of Ion Chromatogram Column, vol.7. Available online: http://tools.thermofisher.com/content/sfs/brochures/IC-Column-catalog-vol7.pdf (accessed on 2 December 2022).
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic−inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Schlipf, D.M.; Rankin, S.E.; Knutson, B.L. Pore-size dependent protein adsorption and protection from proteolytic hydrolysis in tailored mesoporous silica particles. ACS Appl. Mater. Interfaces 2013, 5, 10111–10117. [Google Scholar] [CrossRef]
Sample Name | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) | Whole Amount of Acidic Functional Group (mEq·g−1) |
---|---|---|---|---|
Carbon material | 130 ± 13 | 0.55 ± 0.07 | 17.2 ± 2.4 | 0.29 ± 0.1 |
MOGUL (Raw material) | 128 ± 13 | 0.69 ± 0.08 | 22.1 ± 3.1 | 0.51 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakanishi, A.; Yamamoto, N.; Sakihama, Y.; Okino, T.; Matoba, N. Development of Targeted Protein-Displaying Technology with a Novel Carbon Material. BioTech 2023, 12, 2. https://doi.org/10.3390/biotech12010002
Nakanishi A, Yamamoto N, Sakihama Y, Okino T, Matoba N. Development of Targeted Protein-Displaying Technology with a Novel Carbon Material. BioTech. 2023; 12(1):2. https://doi.org/10.3390/biotech12010002
Chicago/Turabian StyleNakanishi, Akihito, Naotaka Yamamoto, Yuri Sakihama, Tomoya Okino, and Naoki Matoba. 2023. "Development of Targeted Protein-Displaying Technology with a Novel Carbon Material" BioTech 12, no. 1: 2. https://doi.org/10.3390/biotech12010002
APA StyleNakanishi, A., Yamamoto, N., Sakihama, Y., Okino, T., & Matoba, N. (2023). Development of Targeted Protein-Displaying Technology with a Novel Carbon Material. BioTech, 12(1), 2. https://doi.org/10.3390/biotech12010002