Whole Genome Deep Sequencing of the Oral Microbiome in Epidermolysis Bullosa
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Relative Abundance of Dominant Species
3.2. Alpha Diversity
3.3. Differential Abundance
Differential Abundance of Key Species
3.4. Beta Diversity
3.4.1. Beta Diversity (PCoA Plot)
3.4.2. High-Percentile Species Comparison
3.5. Deep Sequencing Data Summary
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baker, J.L. Illuminating the oral microbiome and its host interactions: Recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol. Rev. 2023, 47, fuad051. [Google Scholar] [CrossRef] [PubMed]
- Manghi, P.; Filosi, M.; Zolfo, M.; Casten, L.G.; Garcia-Valiente, A.; Mattevi, S.; Heidrich, V.; Golzato, D.; Perini, S.; Thomas, A.M.; et al. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders. Nat. Commun. 2024, 15, 9743. [Google Scholar] [CrossRef]
- Gao, L.; Xu, T.; Huang, G.; Jiang, S.; Gu, Y.; Chen, F. Oral microbiomes: More and more importance in oral cavity and whole body. Protein Cell 2018, 9, 488–500. [Google Scholar] [CrossRef]
- Caselli, E.; Fabbri, C.; D’Accolti, M.; Soffritti, I.; Bassi, C.; Mazzacane, S.; Franchi, M. Defining the oral microbiome by whole-genome sequencing and resistome analysis: The complexity of the healthy picture. BMC Microbiol. 2020, 20, 120. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, R.; Venugopalan, G.; Ramesh, A.; Tartaglia, G.M.; Singhal, I.; Khijmatgar, S. Microbial Symphony: Navigating the Intricacies of the Human Oral Microbiome and Its Impact on Health. Microorganisms 2024, 12, 571. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tong, X.; Zhu, J.; Tian, L.; Jie, Z.; Zou, Y.; Lin, X.; Liang, H.; Li, W.; Ju, Y.; et al. Metagenome-genome-wide association studies reveal human genetic impact on the oral microbiome. Cell Discov. 2021, 7, 117. [Google Scholar] [CrossRef]
- Brzychczy-Sroka, B.; Talaga-Ćwiertnia, K.; Sroka-Oleksiak, A.; Gurgul, A.; Zarzecka-Francica, E.; Ostrowski, W.; Kąkol, J.; Drożdż, K.; Brzychczy-Włoch, M.; Zarzecka, J. Standardization of the protocol for oral cavity examination and collecting of the biological samples for microbiome research using the next-generation sequencing (NGS): Own experience with the COVID-19 patients. Sci. Rep. 2024, 14, 3717. [Google Scholar] [CrossRef]
- Bardhan, A.; Bruckner-Tuderman, L.; Chapple, I.L.C.; Fine, J.-D.; Harper, N.; Has, C.; Magin, T.M.; Marinkovich, M.P.; Marshall, J.F.; McGrath, J.A.; et al. Epidermolysis bullosa. Nat. Rev. Dis. Primers 2020, 6, 78. [Google Scholar] [CrossRef]
- Mariath, L.M.; Santin, J.T.; Schuler-Faccini, L.; Kiszewski, A.E. Inherited epidermolysis bullosa: Update on the clinical and genetic aspects. An. Bras. De Dermatol. 2020, 95, 551–569. [Google Scholar] [CrossRef]
- Pope, E.; Lara-Corrales, I.; Mellerio, J.E.; Martinez, A.E.; Sibbald, C.; Sibbald, R.G. Epidermolysis Bullosa and Chronic Wounds: A Model for Wound Bed Preparation of Fragile Skin. Adv. Ski. Wound Care 2013, 26, 177–188. [Google Scholar] [CrossRef]
- Uberoi, A.; McCready-Vangi, A.; Grice, E.A. The wound microbiota: Microbial mechanisms of impaired wound healing and infection. Nat. Rev. Microbiol. 2024, 22, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Purushothaman, S.; Meola, M.; Egli, A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int. J. Mol. Sci. 2022, 23, 9834. [Google Scholar] [CrossRef] [PubMed]
- Krämer, S.M.; Serrano, M.C.; Zillmann, G.; Gálvez, P.; Araya, I.; Yanine, N.; Carrasco-Labra, A.; Oliva, P.; Brignardello-Petersen, R.; Villanueva, J.; et al. Oral health care for patients with epidermolysis bullosa-best clinical practice guidelines. Int. J. Paediatr. Dent. 2012, 22, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic wounds: Treatment consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef]
- Schultz, G.; Bjarnsholt, T.; James, G.A.; Leaper, D.J.; McBain, A.J.; Malone, M.; Stoodley, P.; Swanson, T.; Tachi, M.; Wolcott, R.D. Global Wound Biofilm Expert Panel. Consensus guidelines for the identification and treatment of biofilms in chronic nonhealing wounds. Wound Repair Regen. 2017, 25, 744–757. [Google Scholar] [CrossRef]
- Esberg, A.; Haworth, S.; Hasslöf, P.; Lif Holgerson, P.; Johansson, I. Oral microbiota profile associates with sugar intake and taste preference genes. Nutrients 2020, 12, 681. [Google Scholar] [CrossRef]
- Yan, F.; Polk, D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011, 27, 496–501. [Google Scholar] [CrossRef]
- Gilad, O.; Svensson, B.; Viborg, A.H.; Stuer-Lauridsen, B.; Jacobsen, S. The extracellular proteome of Bifidobacterium animalis subsp. Lactis BB-12 reveals proteins with putative roles in probiotic effects. Proteomics 2011, 11, 2503–2514. [Google Scholar] [CrossRef]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Kleinstein, S.E.; Nelson, K.E.; Freire, M. Inflammatory Networks Linking Oral Microbiome with Systemic Health and Disease. J. Dent. Res. 2020, 99, 1131–1139. [Google Scholar] [CrossRef]
- Louloudiadis, A.K.; Louloudiadis, K.A. Case report: Dystrophic Epidermolysis Bullosa: Dental management and oral health promotion. Eur. Arch. Paediatr. Dent. 2009, 10, 42–45. [Google Scholar] [CrossRef]
- Wright, J.T. Oral manifestations in the epidermolysis bullosa spectrum. Dermatol. Clin. 2010, 28, 159–164. [Google Scholar] [CrossRef]
- Wright, J.T.; Fine, J.D.; Johnson, L. Dental caries risk in hereditary epidermolysis bullosa. Pediatr. Dent. 1994, 16, 427–432. [Google Scholar]
- Wright, J.T.; Fine, J.D.; Johnson, L.B. Oral soft tissues in hereditary epidermolysis bullosa. Oral Surg. Oral Med. Oral Pathol. 1991, 71, 440–446. [Google Scholar] [CrossRef]
- Stellingsma, C.; Dijkstra, P.U.; Dijkstra, J.; Duipmans, J.C.; Jonkman, M.F.; Dekker, R. Restrictions in oral functions caused by oral manifestations of epidermolysis bullosa. Eur. J. Dermatol. EJD 2011, 21, 405–409. [Google Scholar] [CrossRef]
- Angarita-Díaz, M.d.P.; Fong, C.; Bedoya-Correa, C.M.; Cabrera-Arango, C.L. Does high sugar intake alter the oral microbiota?: A systematic review. Clin. Exp. Dent. Res. 2022, 8, 1376–1390. [Google Scholar] [CrossRef]
- Kantorowicz, M.; Olszewska-Czyż, I.; Kolarzyk, E.; Chomyszyn-Gajewska, M. Influence of diet on oral health in young adults–pilot study. Przegl. Lek. 2014, 71, 505–511. [Google Scholar]
- Anderson, C.A.; Curzon, M.E.; Van Loveren, C.; Tatsi, C.; Duggal, M.S. Sucrose and dental caries: A review of the evidence. Obes. Rev. 2009, 10, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Esberg, A.; Eriksson, L.; Hasslöf, P.; Haworth, S.; Holgerson, P.L.; Johansson, I. Using oral microbiota data to design a short sucrose intake index. Nutrients 2021, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Rothballer, M.; Altenburger, M.J.; Woelber, J.P.; Karygianni, L.; Lagkouvardos, I.; Hellwig, E.; Al-Ahmad, A. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Sci. Rep. 2018, 8, 14202. [Google Scholar] [CrossRef] [PubMed]
- Misic, A.M.; Gardner, S.E.; Grice, E.A. The Wound Microbiome: Modern Approaches to Examining the Role of Microorganisms in Impaired Chronic Wound Healing. Adv. Wound Care 2014, 3, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Lin, W.; Li, Q.; Yin, W.; Zhu, X.; Gao, S.; Liu, L.; Wu, D.; Zhu, R.; Jiao, N. Identification and validation of microbial biomarkers from cross-cohort datasets using xMarkerFinder. Nat. Protoc. 2024, 19, 2803–2830. [Google Scholar] [CrossRef]
- Duangthip, D.; Wong, M.C.M.; Chu, C.H.; Lo, E.C.M. Caries arrest by topical fluorides in preschool children: 30-month results. J. Dent. 2018, 70, 74–79. [Google Scholar] [CrossRef]
- Horst, J.A.; Tanzer, J.M.; Milgrom, P.M. Fluorides and Other Preventive Strategies for Tooth Decay. Dent. Clin. N. Am. 2018, 62, 207–234. [Google Scholar] [CrossRef]
- Marinho, V.C.; Worthington, H.V.; Walsh, T.; Clarkson, J.E. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst. Rev. 2013, 2013, CD002279. [Google Scholar] [CrossRef]
- Zaffarano, L.; Salerno, C.; Campus, G.; Cirio, S.; Balian, A.; Karanxha, L.; Cagetti, M.G. Silver Diamine Fluoride (SDF) Efficacy in Arresting Cavitated Caries Lesions in Primary Molars: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12917. [Google Scholar] [CrossRef]
- Haworth, S.; Dudding, T.; Waylen, A.; Thomas, S.J.; Timpson, N.J. Ten years on: Is dental general anaesthesia in childhood a risk factor for caries and anxiety? Br. Dent. J. 2017, 222, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Mathur, V.P.; Dhillon, J.K. Dental Caries: A Disease Which Needs Attention. Indian J. Pediatr. 2018, 85, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Kazeminia, M.; Abdi, A.; Shohaimi, S.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med. 2020, 16, 22. [Google Scholar] [CrossRef]
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global Burden and Inequality of Dental Caries, 1990 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef]
- Zhao, G.N.; Wong, H.M.; Wen, P.Y.F.; Wu, Y.; Zhong, Y.J.; Jiang, Y. Burden, Trends, and Inequality of Dental Caries in the U.S., 1990-2019. Am. J. Prev. Med. 2023, 64, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Xu, X.; Dong, Y.; Li, J.; Guan, W.; Huang, Y.; Li, S.; Wang, Y.; Li, J. Global and regional trends in prevalence of untreated caries in permanent teeth: Age-period-cohort analysis from 1990 to 2019 and projections until 2049. J. Dent. 2024, 147, 105122. [Google Scholar] [CrossRef]
- Palmer, R.J., Jr. Composition and development of oral bacterial communities. Periodontol. 2000 2014, 64, 20–39. [Google Scholar] [CrossRef]
- Russo, K.A.; Louie, T. A case of Neisseria sicca bacteremia due to eculizumab therapy. AIM Clin. Cases 2023, 2, e220934. [Google Scholar] [CrossRef]
- Sharma, A.; Masood, U.; Kahlon, A.; Pattar, S.; Iqbal, S.; Lehmann, D. Streptococcus mitis bacteremia and endocarditis: An early sign in pre-cancerous colon polyps. Am. J. Gastroenterol. 2016, 111, S616. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, C.; Zhu, L.; Guo, X.; Ma, H.; Luo, Y.; Wang, Q.; Chen, J. Multiomics Analysis Reveals Significant Disparities in the Oral Microbiota and Metabolites Between Pregnant Women with and without Periodontitis. Infect. Drug Resist. 2024, 17, 4665–4683. [Google Scholar] [CrossRef]
- Baris, O.; Demir, T.; Gulluce, M. Investigation of In vitro Mineral forming bacterial isolates from supragingival calculus. Niger. J. Clin. Pract. 2017, 20, 1571–1575. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Hu, H.; Wei, X.; Wang, X.; Peng, Z.; Ma, R.; Zhao, Q.; Zhao, J.; Liu, J.; et al. Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fluorosis. Sci. Rep. 2021, 11, 2897. [Google Scholar] [CrossRef]
- Korolenkova, M.V.; Poberezhnaya, A.A.; Dmitrieva, N.A. Oral microbiome in children with dystrophic recessive epidermolysis bullosa. Stomatologiia 2022, 101, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Cannon, M.; Ferrer, G.; Tesch, M.; Schipma, M. Whole-genome deep sequencing of the healthy adult nasal microbiome. Microorganisms 2024, 12, 1407. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Lv, Y.; Xie, H.; Lian, K.; Xu, X. Whole-genome metagenomic analysis of the oral microbiota in patients with obstructive sleep apnea comorbid with major depressive disorder. Nat. Sci. Sleep 2024, 16, 1091–1108. [Google Scholar] [CrossRef] [PubMed]
Species | BHQX3346 | BHE428X4 | BHUD7443 |
---|---|---|---|
Neisseria sicca | 13.57 | 4.9 | 16.25 |
Streptococcus mitis | 7.16 | 28.23 | 12.82 |
Morococcus cerebrosus | 3.26 | 3.68 | 19.74 |
Veillonella parvula | 2.28 | 0.8 | 8.83 |
Streptococcus sanguinis | 0.72 | 6.75 | 3.05 |
Actinobaculum sp. | 0.71 | 2.09 | 0.19 |
Neisseria mucosa | 5.63 | 0.62 | 10.2 |
Neisseria subflava | 6.5 | 0.64 | 1.69 |
Prevotella sp. | 1.93 | 2.39 | 1.56 |
Fusobacterium nucleatum | 1.51 | 1.54 | 0.2 |
Sample ID | Shannon Diversity Index (H′) |
---|---|
BHQ (Patient 1) | 3.3 (highest diversity) |
BHE (Patient 2) | 2.4 (lowest diversity) |
BHU (Patient 3) | 2.8 (intermediate) |
Species | BHQ (% RA) | BHE (% RA) | BHU (% RA) | Notable Differences |
---|---|---|---|---|
Streptococcus mitis | ~12.0% | 28.2% | ~7.1% | Dominant in BHE; much lower in BHQ/BHU. |
Neisseria sicca | 13.6% | 4.9% | 16.3% | Present in all, but lowest in BHE (common core species). |
Morococcus cerebrosus | 3.7% | 3.3% | 19.7% | Dramatically higher in BHU (top species). |
Streptococcus sanguinis | 3.1% | 0.1% | 6.8% | High in BHU, nearly absent in BHE. |
Actinomyces viscosus | 1.24% | 0% | 0% | Detected only in BHQ (unique to BHQ). |
Species (>90th Percentile) | BHQ (Patient 1) | BHE (Patient 2) | BHU (Patient 3) |
---|---|---|---|
Neisseria sicca | 13.6% ✔ | 4.9% ✔ | 16.3% ✔ |
Streptococcus mitis | – | 28.2% ✔ | – |
Streptococcus (unclassified) | – | 11.0% ✔ | – |
Morococcus cerebrosus | 3.7% ✔ | 3.3% ✔ | 19.7%✔ |
Streptococcus sanguinis | – | – | 6.8% ✔ |
Streptococcus sinensis | – | – | 0.7% ✔ |
Actinobaculum sp. | 2.1%✔ | 0.7% ✔ | – |
Actinomyces naeslundii | 0.5% ✔ | – | – |
Veillonella parvula | 8.8% ✔ | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cannon, M.; Baghaie, S.; Guzman, L.; Cosantino, A.; Maurer, B. Whole Genome Deep Sequencing of the Oral Microbiome in Epidermolysis Bullosa. Dermato 2025, 5, 17. https://doi.org/10.3390/dermato5030017
Cannon M, Baghaie S, Guzman L, Cosantino A, Maurer B. Whole Genome Deep Sequencing of the Oral Microbiome in Epidermolysis Bullosa. Dermato. 2025; 5(3):17. https://doi.org/10.3390/dermato5030017
Chicago/Turabian StyleCannon, Mark, Sabrina Baghaie, Lara Guzman, Ashlee Cosantino, and Brian Maurer. 2025. "Whole Genome Deep Sequencing of the Oral Microbiome in Epidermolysis Bullosa" Dermato 5, no. 3: 17. https://doi.org/10.3390/dermato5030017
APA StyleCannon, M., Baghaie, S., Guzman, L., Cosantino, A., & Maurer, B. (2025). Whole Genome Deep Sequencing of the Oral Microbiome in Epidermolysis Bullosa. Dermato, 5(3), 17. https://doi.org/10.3390/dermato5030017