Shared Core and Host Specificities of Culturable Pathogenic Yeast Microbiome in Fresh and Dry Feces of Five Synanthropic Wild Birds (Rock Pigeon, European Starling, White Wagtail, Great Tit and House Sparrow)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sampling and Processing
2.3. Molecular Identification of Pure Cultures
2.4. Statistical Data Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marzluff, J.M.; Bowman, R.; Donnelly, R. Avian Ecology and Conservation in an Urbanizing World, 1st ed.; Marzluff, J.M., Bowman, R., Donnelly, R., Eds.; Springer: New York, NY, USA, 2001. [Google Scholar] [CrossRef]
- Veech, J.A.; Small, M.F.; Baccus, J.T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 2011, 38, 69–77. [Google Scholar] [CrossRef]
- James Reynolds, S.; Ibáñez-Álamo, J.D.; Sumasgutner, P.; Mainwaring, M.C. Urbanisation and nest building in birds: A review of threats and opportunities. J. Ornithol. 2019, 160, 841–860. [Google Scholar] [CrossRef]
- Liordos, V.; Jokimäki, J.; Kaisanlahti-Jokimäki, M.-L.; Valsamidis, E.; Kontsiotis, V.J. Niche analysis and conservation of bird species using urban core areas. Sustainability 2021, 13, 6327. [Google Scholar] [CrossRef]
- Kurucz, K.; Purger, J.J.; Batary, P. Urbanization shapes bird communities and nest survival, but not their food quantity. Glob. Ecol. Conserv. 2021, 26, e01475. [Google Scholar] [CrossRef]
- Jokimäki, J.; Ramos-Chernenko, A. Innovative foraging behavior of urban birds: Use of insect food provided by cars. Birds 2024, 5, 469–486. [Google Scholar] [CrossRef]
- Ratcliffe, E.; Gatersleben, B.; Sowden, P.T. Bird sounds and their contributions to perceived attention restoration and stress recovery. J. Environ. Psychol. 2013, 36, 221–228. [Google Scholar] [CrossRef]
- Taylor, L.; Hochuli, D.F. Creating better cities: How biodiversity and ecosystem functioning enhance urban residents’ wellbeing. Urban Ecosyst. 2015, 18, 747–762. [Google Scholar] [CrossRef]
- Kruize, H.; van der Vliet, N.; Staatsen, B.; Bell, R.; Chiabai, A.; Muiños, G.; Higgins, S.; Quiroga, S.; Martinez-Juarez, P.; Aberg Yngwe, M.; et al. Urban green space: Creating a triple win for environmental sustainability, health, and health equity through behavior change. Int. J. Environ. Res. Public Health 2019, 16, 4403. [Google Scholar] [CrossRef]
- Hermann, E.; Van Damme, R.; Bongcam-Rudloff, E.; Nasirzadeh, L. Urban pigeons as reservoirs of critical pathogens: Improved protocol for sequencing pigeon faeces in disease monitoring. EMBnet. J. 2024, 30, 1059. [Google Scholar] [CrossRef]
- Howard, D.H. Pathogenic Fungi in Humans and Animals, 2nd ed.; Howard, D.H., Ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Talapko, J.; Juzbašić, M.; Matijević, T.; Pustijanac, E.; Bekić, S.; Kotris, I.; Škrlec, I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021, 7, 79. [Google Scholar] [CrossRef]
- Haag-Wackernagel, D.; Moch, H. Health hazards posed by feral pigeons. J. Infect. 2004, 48, 307–313. [Google Scholar] [CrossRef]
- Solo-Gabriele, H.; Brandão, J.; Gordon, B.; Ferguson, A. Recreational environment: Pathogenic fungi in public places, information gaps in assessing public health risk. In Environmental Mycology in Public Health, 1st ed.; Viegas, C., Pinheiro, C., Verissimo, C., Sabino, R., Brandão, J., Viegas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 167–192. [Google Scholar] [CrossRef]
- Pereira, R.S.; Dos Santos, H.D.H.; Moraes, O.S.; Júnior, D.P.L.; Hahn, R.C. Children’s public health: Danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. J. Infect. Public Health 2020, 13, 51–57. [Google Scholar] [CrossRef]
- Moschetti, G.; Alfonzo, A.; Francesca, N. Yeasts in birds. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A., Eds.; Springer: Cham, Switzerland, 2017; pp. 435–454. [Google Scholar] [CrossRef]
- Caetano, C.F.; Gaspar, C.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A.; Rolo, J. The role of yeasts in human health: A review. Life 2023, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Graczyk, T.K.; Sunderland, D.; Rule, A.M.; da Silva, A.J.; Moura, I.N.S.; Tamang, L.; Girouard, A.S.; Schwab, K.J.; Breysse, P.N. Urban Feral Pigeons (Columba livia) as a source for air- and waterborne contamination with Enterocytozoon bieneusi spores. Appl. Environ. Microbiol. 2007, 73, 4357–4358. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.K.; Sidrim, J.J.; Cordeiro, R.A.; Brilhante, R.S.; Monteiro, A.J.; Rocha, M.F. Urban pigeons (Columba livia) as a potential source of pathogenic yeasts: A focus on antifungal susceptibility of Cryptococcus strains in Northeast Brazil. Mycopathologia 2010, 169, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Du, P.C.; Li, W.G.; Lu, J.-X. Identification and molecular analysis of pathogenic yeasts in droppings of Domestic Pigeons in Beijing, China. Mycopathologia 2012, 174, 203–214. [Google Scholar] [CrossRef]
- Abulreesh, H.H.; Organji, S.R.; Elbanna, K.; Osman, G.E.; Almalki, M.H.; Abdel-Malek, A.Y.; Ghyathuddin, A.A.K.; Ahmad, I. Diversity, virulence factors, and antifungal susceptibility patterns of pathogenic and opportunistic yeast species in Rock Pigeon fecal droppings in Western Saudi Arabia. Pol. J. Microbiol. 2019, 68, 493–504. [Google Scholar] [CrossRef]
- Nualmalang, R.; Thanomsridetchai, N.; Teethaisong, Y.; Sukphopetch, P.; Tangwattanachuleeporn, M. Identification of pathogenic and opportunistic yeasts in pigeon excreta by MALDI-TOF mass spectrometry and their prevalence in Chon Buri province, Thailand. Int. J. Environ. Res. Public Health 2023, 20, 3191. [Google Scholar] [CrossRef]
- Hermann, E. Health-Hazardous Fungi in Feces from Feral Pigeons. Bachelor’s Thesis, Disciplinary Domain of Science and Technology, Biology Education Centre Sweden, Uppsala University, Uppsala, Sweden, 2023. [Google Scholar]
- Jokimäki, J.; Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 1998, 39, 253–263. [Google Scholar] [CrossRef]
- World Health Organization. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. 2022. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 13 December 2024).
- Lionakis, M.S.; Chowdhary, A. Candida auris infections. N. Engl. J. Med. 2024, 391, 1924–1935. Available online: https://www.nejm.org/doi/abs/10.1056/NEJMra2402635 (accessed on 8 March 2025). [CrossRef]
- Banks, T.L. Identification of Potentially Pathogenic Yeast Species in Seagull Guano by Molecular Techniques. Honors Theses, Coastal Carolina University, Conway, SC, USA, 2009. Available online: https://digitalcommons.coastal.edu/honors-theses/144 (accessed on 8 March 2025).
- Al-Yasiri, M.H.; Normand, A.C.; L’ollivier, C.; Lachaud, L.; Bourgeois, N.; Rebaudet, S.; Piarroux, R.; Mauffrey, J.-F.; Ranque, S. Opportunistic fungal pathogen Candida glabrata circulates between humans and yellow-legged gulls. Sci. Rep. 2016, 6, 36157. [Google Scholar] [CrossRef]
- Al-Yasiri, M.H.; Normand, A.C.; Piarroux, R.; Ranque, S.; Mauffrey, J.F. Gut yeast communities in Larus michahellis from various breeding colonies. Med. Mycol. 2017, 55, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Reusch, K. Foraging Ecology of Kelp Gulls in Natural and Anthropogenically Modified Environments. Ph.D. Dissertation, School of Environmental Sciences, Faculty of Sciences, Nelson Mandela University, Port Elizabeth, South Africa, 2021. Available online: http://hdl.handle.net/10948/54106 (accessed on 8 March 2025).
- Glushakova, A.; Kachalkin, A. Diversity of culturable yeasts in the feces of Mew Gulls breeding in natural and urban habitats, with insights into the antifungal susceptibility of the observed pathogens. Birds 2024, 5, 543–557. [Google Scholar] [CrossRef]
- Cafarchia, C.; Camarda, A.; Romito, D.; Campolo, M.; Quaglia, N.C.; Tullio, D.; Otranto, D. Occurrence of yeasts in cloacae of migratory birds. Mycopathologia 2006, 161, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Iatta, R.; Camarda, A.; Montagna, M.T.; Otranto, D. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts. Med. Mycol. 2006, 44, 485–492. [Google Scholar] [CrossRef]
- Latham, B.; Leishman, A.; Martin, J.; Phalen, D. Establishing normal fecal flora in wild Australian passerine birds by use of the fecal gram stain. J. Zoo Wildl. Med. 2017, 48, 786–793. [Google Scholar] [CrossRef]
- Cafarchia, C.; Iatta, R.; Danesi, P.; Camarda, A.; Capelli, G.; Otranto, D. Yeasts isolated from cloacal swabs, feces, and eggs of laying hens. Med. Mycol. 2018, 57, 340–345. [Google Scholar] [CrossRef]
- Simi, W.B.; Leite, D.P., Jr.; Paula, C.R.; Hoffmann-Santos, H.D.; Takahara, D.T.; Hahn, R.C. Yeasts and filamentous fungi in psittacidae and birds of prey droppings in midwest region of Brazil: A potential hazard to human health. Braz. J. Biol. 2018, 79, 414–422. [Google Scholar] [CrossRef]
- Mirhosseini, Z.; Khosravi, A. Fungal pathogens: Emerging threats to birds and human health, assessment the relative frequency of pathogenic fungi in ornamental bird feces. J. Poult. Sci. Avian Dis. 2023, 1, 20–24. [Google Scholar] [CrossRef]
- Teyssier, A. Influence of Urbanisation on the Gut Microbiota of Avian Hosts and Implications for Host Fitness. Ph.D. Dissertation in Sciences: Biology, University of Antwerp, Antwerp, Belgium, 2020. Available online: https://repository.uantwerpen.be/docstore/d:irua:2652 (accessed on 8 March 2025).
- Teyssier, A.; Matthysen, E.; Hudin, N.S.; De Neve, L.; White, J.; Lens, L. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B 2020, 287, 20192182. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Y.; Huang, J.; Liu, Y.; Li, S. Comparative study of gut microbiome in urban and rural Eurasian tree sparrows. Animals 2024, 14, 3497. [Google Scholar] [CrossRef]
- Matheen, M.I.A.; Gillings, M.R.; Dudaniec, R.Y. Dominant factors shaping the gut microbiota of wild birds. Emu Austral Ornithol. 2022, 122, 255–268. [Google Scholar] [CrossRef]
- Kalyakin, M.V.; Voltzit, O.V. Atlas. Birds of Moscow City and the Moscow Region, 1st ed.; Pensoft: Sofia, Bulgaria, 2006; 372p. [Google Scholar]
- Morkovin, A.A.; Kalyakin, M.V.; Voltzit, O.V. First steps of a common birds monitoring scheme in the Moscow region, Russia. Die Vogelwelt 2017, 137, 89–98. [Google Scholar]
- World-Weather. Available online: https://world-weather.ru/pogoda/russia/moscow/may-2024/ (accessed on 13 June 2025).
- Kalyakin, M.V.; Voltsit, O.V.; Stroganova, A.A. Results of monitoring the number of sparrows at several survey sites in Moscow. Baikal Zool. J. 2023, 1, 30–37. [Google Scholar]
- Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W.; Fungal Barcoding Consortium; Fungal Barcoding Consortium Author List; Bolchacova, E.; et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. Available online: https://www.pnas.org/doi/10.1073/pnas.1117018109 (accessed on 8 March 2025). [CrossRef] [PubMed]
- Vu, D.; Groenewald, M.; Szöke, S.; Cardinali, G.; Eberhardt, U.; Stielow, B.; de Vries, M.; Verkleij, G.J.M.; Crous, P.W.; Boekhout, T.; et al. DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud. Mycol. 2016, 85, 91–105. Available online: https://pubmed.ncbi.nlm.nih.gov/28050055/ (accessed on 8 March 2025). [CrossRef]
- Glushakova, A.M.; Kachalkin, A.V. Endophytic yeasts in Malus domestica and Pyrus communis fruits under anthropogenic impact. Microbiology 2017, 86, 128–135. [Google Scholar] [CrossRef]
- Kachalkin, A.V.; Glushakova, A.M.; Venzhik, A.S. Presence of clinically significant endophytic yeasts in agricultural crops: Monitoring and ecological safety assessment. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 723, p. 042005. [Google Scholar] [CrossRef]
- Flickr. Available online: https://www.flickr.com/ (accessed on 4 January 2025).
- Hlasek: Wildlife Photo Gallery Birds Mammals Plants. Available online: https://hlasek.com/ (accessed on 4 January 2025).
- Medina, I.R.; Fuentes, L.R.; Arteaga, M.B.; Valcárcel, F.R.; Arbelo, F.A.; Del Castillo, D.P.; Suárez, S.D.; Quintana, O.F.; Gutiérrez, B.V.; Sergent, F.S.; et al. Pigeons and their droppings as reservoirs of Candida and other zoonotic yeasts. Rev. Iberoam. Micol. 2017, 34, 211–214. [Google Scholar] [CrossRef]
- Brilhante, R.S.N.; Castelo-Branco, D.D.S.C.M.; Soares, G.D.P.; Astete-Medrano, D.J.; Monteiro, A.J.; Cordeiro, R.D.A.; Sidrim, J.J.C.; Rocha, M.F.G. Characterization of the gastrointestinal yeast microbiota of cockatiels (Nymphicus hollandicus): A potential hazard to human health. J. Med. Microbiol. 2010, 59, 718–723. [Google Scholar] [CrossRef]
- Rhimi, W.; Aneke, C.I.; Annoscia, G.; Camarda, A.; Mosca, A.; Cantacessi, C.; Otranto, D.; Cafarchia, C. Virulence and in vitro antifungal susceptibility of Candida albicans and Candida catenulata from laying hens. Int. Microbiol. 2021, 24, 57–63. [Google Scholar] [CrossRef]
- Glushakova, A.; Tepeeva, A.; Prokof’eva, T.; Kachalkin, A. Culturable yeast diversity in urban topsoil influenced by various anthropogenic impacts. Int. Microbiol. 2024, 27, 1383–1403. [Google Scholar] [CrossRef]
- Yamin, D.; Akanmu, M.H.; Al Mutair, A.; Alhumaid, S.; Rabaan, A.A.; Hajissa, K. Global prevalence of antifungal-resistant Candida parapsilosis: A systematic review and meta-analysis. Trop. Med. Infect. Dis. 2022, 7, 188. [Google Scholar] [CrossRef]
- Rojas, O.C.; Montoya, A.M.; Treviño-Rangel, R.D.J. Clavispora lusitaniae: From a saprophytic yeast to an emergent pathogen. Fungal Biol. 2024, 128, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Robnett, C.J.; Ward, J.M.; Brayton, C.; Gorelick, P.; Walsh, T.J. Multigene phylogenetic analysis of pathogenic Candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov. J. Clin. Microbiol. 2005, 43, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Urubschurov, V.; Büsing, K.; Janczyk, P.; Souffrant, W.-B.; Zeyner, A. Development and evaluation of qPCR assay for quantitation of Kazachstania slooffiae and total yeasts occurring in the porcine gut. Curr. Microbiol. 2015, 71, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Deegenaars, M.L.; Watson, K. Heat shock response in the thermophilic enteric yeast Arxiozyma telluris. Appl. Environ. Microbiol. 1998, 64, 3063–3065. [Google Scholar] [CrossRef]
- Kaeuffer, C.; Baldacini, M.; Ruge, T.; Ruch, Y.; Zhu, Y.J.; De Cian, M.; Philouze, G.; Bachellier, P.; Denis, J.; Lefebvre, N.; et al. Fungal infections caused by Kazachstania spp., Strasbourg, France, 2007–2020. Emerg. Infect. Dis. 2022, 28, 29–34. [Google Scholar] [CrossRef]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeasts: A Taxonomic Study, 5th ed.; Kurtzman, C.P., Fell, J.W., Boekhout, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Byzov, B.A.; Thanh, V.N.; Babjeva, I.P. Yeasts associated with soil invertebrates. Biol. Fertil. Soils 1993, 16, 183–187. [Google Scholar] [CrossRef]
- Maksimova, I.A.; Glushakova, A.M.; Kachalkin, A.V.; Chernov, I.Y.; Panteleeva, S.N.; Reznikova, Z.I. Yeast communities of Formica aquilonia colonies. Microbiology 2016, 85, 124–129. [Google Scholar] [CrossRef]
- Hoang, D.; Kopp, A.; Chandler, J.A. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly–yeast relationship? Peer J. 2015, 3, e1116. Available online: https://peerj.com/articles/1116 (accessed on 8 March 2025). [CrossRef]
- Grond, K.; Sandercock, B.K.; Jumpponen, A.; Zeglin, L.H. The avian gut microbiota: Community, physiology and function in wild birds. J. Avian Biol. 2018, 49, e01788. [Google Scholar] [CrossRef]
- Ječmenica, B.; Kralj, J.; Taylor, L.T.; Jurinović, L. Habitat use of urban nesting yellow-legged gulls in Croatia during the breeding season. Nat. Croat. Period. Musei Hist. Nat. Croat. 2023, 32, 399–412. [Google Scholar] [CrossRef]
- Breuer, U.; Harms, H. Debaryomyces hansenii—An extremophilic yeast with biotechnological potential. Yeast 2006, 23, 415–437. [Google Scholar] [CrossRef]
- Aggarwal, M.; Mondal, A.K. Debaryomyces hansenii: An osmotolerant and halotolerant yeast. In Yeast Biotechnology: Diversity and Applications; Satyanarayana, T., Kunze, G., Eds.; Springer: Dordrecht, The Netherland, 2009; pp. 65–84. [Google Scholar] [CrossRef]
Yeast Species | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 h | 45 d | 90 d | 6 h | 45 d | 90 d | 6 h | 45 d | 90 d | 6 h | 45 d | 90 d | 6 h | 45 d | 90 d | |
Arxiozyma bovina | 44.5 | – | – | – | – | – | – | – | – | – | – | – | – | – | – |
Candida albicans | 16.2 | – | – | 8.1 | – | – | 21.6 | – | – | 15.1 | – | – | 3.2 | – | – |
Nakaseomyces glabratus | 7.6 | – | – | 3.7 | – | – | 8.9 | – | – | 8.9 | – | – | 4.3 | – | – |
Clavispora lusitaniae | 4.9 | – | – | 1 | – | – | 3.4 | – | – | 3.5 | – | – | 0.8 | – | – |
C. tropicalis | 2.8 | 0.1 | – | 2.2 | 0.1 | – | 2.5 | 0.1 | – | 2.6 | 0.1 | – | 2.1 | – | – |
C. parapsilosis | 15.3 | 33.9 | 4.6 | 44.7 | 31.6 | 4.1 | 59.4 | 33.2 | 5.3 | 49.1 | 29.8 | 4.2 | 68.7 | 28.6 | 3.5 |
Debaryomyces hansenii | 3.6 | 55.2 | 80.3 | 23 | 49.7 | 95.3 | 3.8 | 64.9 | 94.7 | 10.1 | 58.9 | 95.7 | 19.7 | 68.9 | 96.5 |
D. fabryi | – | – | – | 17.1 | 17.1 | 0.6 | – | – | – | – | – | – | 0.6 | 1.2 | – |
Pichia kudriavzevii | 5.1 | 10.8 | 15.1 | 0.2 | 1.5 | – | 0.4 | 1.8 | – | 10.7 | 11.2 | 0.1 | 0.6 | 1.3 | – |
Shannon index, H’ | 1.66 | 0.94 | 0.6 | 1.17 | 0.78 | 0.17 | 1.21 | 0.73 | 0.21 | 1.53 | 0.92 | 0.18 | 0.97 | 0.67 | 0.15 |
Pielou index, J’ | 0.52 | 0.29 | 0.18 | 0.36 | 0.24 | 0.05 | 0.38 | 0.23 | 0.06 | 0.48 | 0.29 | 0.06 | 0.3 | 0.21 | 0.04 |
Candida albicans | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | *** | ns | *** | |
European Starling | *** | *** | *** | ||
White Wagtail | *** | *** | |||
Great Tit | *** | ||||
House Sparrow | |||||
Nakaseomyces glabratus | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | *** | *** | *** | |
European Starling | *** | *** | ns | ||
White Wagtail | ns | *** | |||
Great Tit | *** | ||||
House Sparrow | |||||
Clavispora lusitaniae | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | *** | *** | *** | |
European Starling | *** | *** | ns | ||
White Wagtail | ns | *** | |||
Great Tit | *** | ||||
House Sparrow | |||||
Candida tropicalis | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | ns | ns | *** | |
European Starling | ns | *** | ns | ||
White Wagtail | ns | ns | |||
Great Tit | ns | ||||
House Sparrow | |||||
Candida parapsilosis | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | *** | *** | *** | |
European Starling | *** | ns | *** | ||
White Wagtail | *** | ns | |||
Great Tit | *** | ||||
House Sparrow | |||||
Pichia kudriavzevii | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | *** | *** | *** | |
European Starling | ns | *** | ns | ||
White Wagtail | *** | ns | |||
Great Tit | *** | ||||
House Sparrow | |||||
Debaryomyces hansenii | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | *** | ns | *** | *** | |
European Starling | *** | *** | *** | ||
White Wagtail | *** | *** | |||
Great Tit | *** | ||||
House Sparrow | |||||
Debaryomyces fabryi | |||||
Birds | Rock Pigeon | European Starling | White Wagtail | Great Tit | House Sparrow |
Rock Pigeon | – | – | – | – | |
European Starling | – | – | *** | ||
White Wagtail | – | – | |||
Great Tit | – | ||||
House Sparrow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glushakova, A.; Kachalkin, A. Shared Core and Host Specificities of Culturable Pathogenic Yeast Microbiome in Fresh and Dry Feces of Five Synanthropic Wild Birds (Rock Pigeon, European Starling, White Wagtail, Great Tit and House Sparrow). Birds 2025, 6, 41. https://doi.org/10.3390/birds6030041
Glushakova A, Kachalkin A. Shared Core and Host Specificities of Culturable Pathogenic Yeast Microbiome in Fresh and Dry Feces of Five Synanthropic Wild Birds (Rock Pigeon, European Starling, White Wagtail, Great Tit and House Sparrow). Birds. 2025; 6(3):41. https://doi.org/10.3390/birds6030041
Chicago/Turabian StyleGlushakova, Anna, and Aleksey Kachalkin. 2025. "Shared Core and Host Specificities of Culturable Pathogenic Yeast Microbiome in Fresh and Dry Feces of Five Synanthropic Wild Birds (Rock Pigeon, European Starling, White Wagtail, Great Tit and House Sparrow)" Birds 6, no. 3: 41. https://doi.org/10.3390/birds6030041
APA StyleGlushakova, A., & Kachalkin, A. (2025). Shared Core and Host Specificities of Culturable Pathogenic Yeast Microbiome in Fresh and Dry Feces of Five Synanthropic Wild Birds (Rock Pigeon, European Starling, White Wagtail, Great Tit and House Sparrow). Birds, 6(3), 41. https://doi.org/10.3390/birds6030041