Gastric Epithelial Cell Plasticity and Molecular Mechanisms of Metaplastic Transformations in the Stomach
Abstract
1. Introduction
2. Terminology and Definitions
2.1. Cell Plasticity
2.1.1. Transdetermination
2.1.2. Transdifferentiation
2.1.3. Transcommitment
2.1.4. Dedifferentiation
2.1.5. Reversion
2.1.6. Paligenosis
2.1.7. Cellular Reprogramming
2.1.8. Metaplasia
3. Gastric Epithelium Development and Renewal
Key Transcription Factors and Signaling Pathways in Stomach Development
4. Metaplastic Transformations in the Gastric Mucosa
- 1.
- Spasmolytic Polypeptide-Expressing Metaplasia (SPEM)
- 2.
- Intestinal Metaplasia
4.1. Spasmolytic Polypeptide-Expressing Metaplasia (SPEM, Pseudopyloric Metaplasia, Antralization)
4.1.1. SPEM Terminology
4.1.2. Global Prevalence of SPEM
4.1.3. SPEM: Mechanisms of Development and Biomarkers
4.1.4. SPEM Classification
- Morphological Classification
- Mature SPEMCharacterized by columnar mucous cells resembling deep antral or Brunner’s gland-like cells, located primarily at the base of oxyntic glands. These cells contain pale cytoplasm and basally located nuclei [114].
- Proliferative/Active SPEM
- 2.
- Molecular/Immunohistochemical ClassificationSPEM is primarily defined by the expression of a core set of markers:
- TFF2 (Trefoil Factor Family 2)—A defining marker of SPEM, also known as spasmolytic polypeptide [82].
- MUC6—A mucin typically associated with deep gastric glands and mucous neck cells [82].
- GSII (Griffonia simplicifolia lectin II)—Binds to N-acetyl-D-glucosamine and is used as a glycoprotein marker of SPEM [117].
Additional markers involved in SPEM classification and progression include:- CD44v9—Associated with cellular resilience, stemness, and GC risk [73].
- Aquaporin 5 (AQP5)—A recently identified early and lineage-specific marker of SPEM that helps identify transitional states toward IM [73].
- TROP2—Enriched in SPEM glands with IIM, marking a key progression interface [73].
- Clusterin—Identified in transitioning glands, potentially linked to chronic injury and metaplastic evolution [117].
- 3.
- Transitional vs. Non-Transitional SPEM
- Transitional SPEM
- Non-Transitional SPEMDisplays a stable secretory phenotype, retaining expression of MUC6 and TFF2, without markers of intestinal differentiation. More common in early or reversible injury settings [82].
- 4.
- Induced vs. Spontaneous SPEM
- Induced SPEMStudied in experimental models involving parietal cell loss through agents such as DMP-777, L-635, or chronic H. felis infection. Provides insight into the cellular origin and molecular dynamics of metaplasia [118].
- Spontaneous SPEM
4.1.5. SPEM Clinical Implications
4.2. Intestinal Metaplasia
4.2.1. Global Prevalence of Gastric Intestinal Metaplasia
4.2.2. Intestinal Metaplasia Classification
- Solely Intestinal Type (I-type)
- Gastric–Intestinal Mixed Type (GI-mixed type)
4.2.3. IM vs. SPEM
4.2.4. Gastric Cancer Risk Associated with Intestinal Metaplasia
4.2.5. IM Mechanisms of Development and Biomarkers
- H. pylori infection: Persistent infection promotes chronic inflammation, oxidative stress, and cytokine release, all of which contribute to mucosal injury and remodeling [132].
- Loss of parietal cells: Parietal cell depletion results in glandular atrophy and significant changes in the gastric microenvironment, facilitating metaplastic transformation [82].
- Transdifferentiation and dedifferentiation: Lineage plasticity among differentiated cells, such as chief cells and mucous neck cells, allows for their conversion into metaplastic cell types [52].
- Stem cell reprogramming: Aberrant activation or reprogramming of gastric stem cells in response to chronic injury may initiate intestinal differentiation [163].
- CDX2: This intestine-specific transcription factor is central to driving intestinal-type differentiation in gastric epithelial cells [164].
- Notch, Wnt/β-catenin, and Hedgehog signaling: These developmental pathways regulate proliferation, differentiation, and cell fate decisions during metaplastic progression [165].
- Epigenetic modifications: Aberrant DNA methylation and histone acetylation patterns are frequently observed in IM and may promote or stabilize the metaplastic phenotype [152].
- Chief cell transdifferentiation (SPEM): Studies suggest that gastric chief cells can transdifferentiate into spasmolytic polypeptide-expressing metaplasia (SPEM), which may serve as a precursor stage to IM [52].
- Mucous neck cell lineage: Under chronic inflammatory conditions, mucous neck cells may also undergo reprogramming and contribute to the metaplastic cell pool [132].
4.2.6. Genomic and Epigenomic Alterations in IM
- Loss of Shh is associated with gastric atrophy and IM, especially CIM, marking it as an early event in gastric carcinogenesis [194].
- Inflammatory states upregulate Shh expression, potentially contributing to stem cell regeneration but also posing a risk for neoplastic transformation [194].
- Downstream effectors like Gli3 and mesenchymal targets such as Bmp4 and Foxf integrate Hh signals with Wnt signaling, modulating proliferation, apoptosis, and differentiation [194].
4.2.7. IM Clinical Implications and Management Strategies
5. Discussion
6. Future Research Directions
- Elucidate Early Triggers: Investigate how acute and chronic injuries, such as H. pylori infection, initiate reprogramming events at both the cellular and chromatin levels [226].
- Model Human Disease: Develop robust human-derived organoid models and improved in vivo systems that closely mimic the spectrum of gastric injury and metaplasia, to facilitate both mechanistic insight and therapeutic screening [233].
7. Biases and Limitations in Metaplasia of the Gastric Mucosa Study
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, L. Deciphering genetic regulation at single-cell resolution in gastric cancer. Cell Genom. 2025, 5, 100846. [Google Scholar] [CrossRef] [PubMed]
- The WHO Classification of Tumours Editorial Board. Digestive System Tumours: WHO Classification of Tumours, 5th ed.; IARC: Lyon, France, 2019; Volume 1. [Google Scholar]
- Yan, Z.; Liu, Y.; Yuan, Y. The plasticity of epithelial cells and its potential in the induced differentiation of gastric cancer. Cell Death Discov. 2024, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ma, Z.; Deng, Z.; Yi, Z.; Tuo, B.; Li, T.; Liu, X. Role of Spasmolytic Polypeptide-Expressing Metaplasia in Gastric Mucosal Diseases. Am. J. Cancer Res. 2023, 13, 1667–1681. [Google Scholar] [PubMed]
- Gebrehiwot, N.T.; Liu, Y.; Li, J.; Liu, H.-M. Molecular Alterations in Gastric Intestinal Metaplasia Shed Light on Alteration of Methionine Metabolism: Insight into New Diagnostic and Treatment Approaches. Biomedicines 2025, 13, 964. [Google Scholar] [CrossRef]
- Mülder, D.T.; Hahn, A.I.; Huang, R.J.; Zhou, M.J.; Blake, B.; Omofuma, O.; Murphy, J.D.; Gutiérrez-Torres, D.S.; Zauber, A.G.; O’Mahony, J.F.; et al. Prevalence of Gastric Precursor Lesions in Countries with Differential Gastric Cancer Burden: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2024, 22, 1605–1617.e46. [Google Scholar] [CrossRef]
- Botezatu, A. Gastric Intestinal Metaplasia and Gastric Epithelial Dysplasia–Precursor Lesions of Gastric Cancer. Mold. J. Health Sci. 2025, 1, 54–60. [Google Scholar] [CrossRef]
- Qin, X.; Tape, C.J. Functional Analysis of Cell Plasticity Using Single-Cell Technologies. Trends Cell Biol. 2024, 34, 854–864. [Google Scholar] [CrossRef]
- Tata, P.R.; Rajagopal, J. Cellular Plasticity: 1712 to the Present Day. Curr. Opin. Cell Biol. 2016, 43, 46–54. [Google Scholar] [CrossRef]
- Al-Adsani, A.; Burke, Z.D.; Eberhard, D.; Lawrence, K.L.; Shen, C.-N.; Rustgi, A.K.; Sakaue, H.; Farrant, J.M.; Tosh, D. Dexamethasone treatment induces the reprogramming of pancreatic acinar cells to hepatocytes and ductal cells. PLoS ONE 2010, 5, e13650. [Google Scholar] [CrossRef]
- Morris, S.A. Direct lineage reprogramming via pioneer factors; a detour through developmental gene regulatory networks. Development 2016, 143, 2696–2705. [Google Scholar] [CrossRef] [PubMed]
- Kalra, R.S.; Dhanjal, J.K.; Das, M.; Singh, B.; Naithani, R. Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells 2021, 10, 2558. [Google Scholar] [CrossRef] [PubMed]
- Reid, A.; Tursun, B. Transdifferentiation: Do transition states lie on the path of development? Curr. Opin. Syst. Biol. 2018, 11, 18–23. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial–mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef]
- Nieto, M.A.; Huang, R.Y.-J.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.A.; Guo, W.; Liao, M.-J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Bornes, L.; Belthier, G.; van Rheenen, J. Epithelial-to-Mesenchymal Transition in the Light of Plasticity and Hybrid E/M States. J. Clin. Med. 2021, 10, 2403. [Google Scholar] [CrossRef]
- Agnetti, J.; Bou Malham, V.; Desterke, C.; Benzoubir, N.; Peng, J.; Jacques, S.; Rahmouni, S.; Di Valentin, E.; Tan, T.Z.; Samuel, D.; et al. PI3Kδ activity controls plasticity and discriminates between EMT and stemness based on distinct TGFβ signaling. Commun. Biol. 2022, 5, 740. [Google Scholar] [CrossRef]
- Mills, J.C.; Stanger, B.Z.; Sander, M. Nomenclature for cellular plasticity: Are the terms as plastic as the cells themselves? EMBO J. 2019, 38, e103148. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, D.H. Origins of Metaplasia in Barrett’s Esophagus: Is this an Esophageal Stem or Progenitor Cell Disease? Dig. Dis. Sci. 2018, 63, 2005–2012. [Google Scholar] [CrossRef]
- Wang, D.H.; Souza, R.F. Transcommitment: Paving the Way to Barrett’s Metaplasia. In Stem Cells, Pre-Neoplasia, and Early Cancer of the Upper Gastrointestinal Tract; Jansen, M., Wright, N.E., Eds.; Springer: Cham, Switzerland, 2016; Volume 908, pp. 183–212. [Google Scholar] [CrossRef]
- Mills, J.C.; Sansom, O.J. Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci. Signal. 2015, 8, re8. [Google Scholar] [CrossRef]
- Tetteh, P.W.; Farin, H.F.; Clevers, H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol. 2015, 25, 100–108. [Google Scholar] [CrossRef]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Lane, S.W.; Williams, D.A.; Watt, F.M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 2014, 32, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Willet, S.G.; Mills, J.C. Stomach organ and cell lineage differentiation: From embryogenesis to adult homeostasis. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 546–559. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, A.; Moqri, M.; Maybury-Lewis, S.Y.; Rogers-Hammond, R.; de Jong, T.A.; Parker, A.; Rasouli, S.; Schöler, H.R.; Sinclair, D.A.; Sebastiano, V. Mechanisms, pathways and strategies for rejuvenation through epigenetic reprogramming. Nat. Aging 2024, 4, 14–26. [Google Scholar] [CrossRef]
- Burke, Z.D.; Tosh, D. Barrett’s metaplasia as a paradigm for understanding the development of cancer. Curr. Opin. Genet. Dev. 2012, 22, 494–499. [Google Scholar] [CrossRef]
- Slack, J.M.W.; Tosh, D. Transdifferentiation and metaplasia-switching cell types. Curr. Opin. Genet. Dev. 2001, 11, 581–586. [Google Scholar] [CrossRef]
- Tosh, D.; Slack, J.M.W. How cells change their phenotype. Nat. Rev. Mol. Cell Biol. 2002, 3, 187–194. [Google Scholar] [CrossRef]
- Kim, T.H.; Shivdasani, R.A. Stomach development, stem cells and disease. Development 2016, 143, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Panta, E.W.; Choi, E.; Goldenring, J.R. The Fibroblast Landscape in Stomach Carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 671–678. [Google Scholar] [CrossRef]
- Sigal, M.; Logan, C.Y.; Kapalczynska, M.; Mollenkopf, H.J.; Berger, H.; Wiedenmann, B.; Nusse, R.; Amieva, M.R.; Meyer, T.F. Stromal R-spondin orchestrates gastric epithelial stem cells and gland homeostasis. Nature 2017, 548, 451–455. [Google Scholar] [CrossRef]
- Pastuła, A.; Middelhoff, M.; Brandtner, A.; Tobiasch, M.; Höhl, B.; Nuber, A.H.; Demir, I.E.; Neupert, S.; Kollmann, P.; Mazzuoli-Weber, G.; et al. Three-dimensional gastrointestinal organoid culture in combination with nerves or fibroblasts: A method to characterize the gastrointestinal stem cell niche. Stem Cells Int. 2016, 2016, 3710836. [Google Scholar] [CrossRef]
- Grapin-Botton, A.; Constam, D. Evolution of the mechanisms and molecular control of endoderm formation. Mech. Dev. 2007, 124, 253–278. [Google Scholar] [CrossRef]
- Arnold, K.; Sarkar, A.; Yram, M.A.; Polo, J.M.; Bronson, R.; Sengupta, S.; Seandel, M.; Geijsen, N.; Hochedlinger, K. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011, 9, 317–329. [Google Scholar] [CrossRef]
- Mistri, T.K.; Devasia, A.G.; Chu, L.T.; Ng, W.P.; Halbritter, F.; Colby, D.; Martynoga, B.; Tomlinson, S.R.; Chambers, I.; Robson, P.; et al. Selective Influence of Sox2 on POU Transcription Factor Binding in Embryonic and Neural Stem Cells. EMBO Rep. 2015, 16, 1177–1191. [Google Scholar] [CrossRef]
- Stange, D.E.; Koo, B.-K.; Huch, M.; Sibbel, G.; Basak, O.; Lyubimova, A.; Kujala, P.; Bartfeld, S.; Koster, J.; Geahlen, J.H.; et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 2013, 155, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Goldenring, J.R.; Nam, K.T.; Mills, J.C. The origin of pre-neoplastic metaplasia in the stomach: Chief cells emerge from the Mist. Exp. Cell Res. 2011, 317, 2759–2764. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Norgard, R.J.; Stanger, B.Z. Cellular plasticity in cancer. Cancer Discov. 2019, 9, 837–851. [Google Scholar] [CrossRef]
- McLin, V.A.; Rankin, S.A.; Zorn, A.M. Repression of Wnt/β-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007, 134, 2207–2217. [Google Scholar] [CrossRef]
- Prakash, A.; Udager, A.M.; Saenz, D.A.; Gumucio, D.L. Roles for Nkx2-5 and Gata3 in the Ontogeny of the Murine Smooth Muscle Gastric Ligaments. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G430–G436. [Google Scholar] [CrossRef] [PubMed]
- Obaid, Y.Y.; Toubasi, A.A.; Albustanji, F.H.; Al-Qawasmeh, A.R. Perinatal Risk Factors for Infantile Hypertrophic Pyloric Stenosis: A Systematic Review and Meta-Analysis. J. Pediatr. Surg. 2023, 58, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Peeters, B.; Benninga, M.A.; Hennekam, R.C. Infantile Hypertrophic Pyloric Stenosis-Genetics and Syndromes. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 646–660. [Google Scholar] [CrossRef]
- Ramalho-Santos, M.; Melton, D.A.; McMahon, A.P. Hedgehog Signals Regulate Multiple Aspects of Gastrointestinal Development. Development 2000, 127, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- van den Brink, G.R.; Bleuming, S.A.; Hardwick, J.C.H.; Schepman, B.L.; Offerhaus, G.J.A.; Keller, J.J.; Nielsen, C.; Gaffield, W.; van Deventer, S.J.H.; Roberts, D.J.; et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat. Genet. 2004, 36, 277–282. [Google Scholar] [CrossRef]
- Nyeng, P.; Norgaard, G.A.; Kobberup, S.; Jensen, J. FGF10 signaling controls stomach morphogenesis. Dev. Biol. 2007, 303, 295–310. [Google Scholar] [CrossRef]
- Lv, Y.Q.; Wu, J.; Li, X.K.; Zhang, J.S.; Bellusci, S. Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury. Front. Cell Dev. Biol. 2019, 7, 326. [Google Scholar] [CrossRef]
- Thompson, C.A.; DeLaForest, A.; Battle, M.A. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev. Biol. 2018, 435, 97–108. [Google Scholar] [CrossRef]
- Nam, K.T.; Lee, H.J.; Sousa, J.F.; Weis, V.G.; O’Neal, R.L.; Finke, P.E.; Romero-Gallo, J.; Shi, G.; Mills, J.C.; Peek, R.M., Jr.; et al. Mature chief cells are cryptic progenitors for metaplasia in the stomach. Gastroenterology 2010, 139, 2028–2037.e9. [Google Scholar] [CrossRef]
- Aoki, R.; Shoshkes-Carmel, M.; Gao, N.; Shin, S.; May, C.L.; Golson, M.L.; Zahm, A.M.; Ray, M.; Wiser, C.L.; Wright, C.V.; et al. Foxl1-expressing mesenchymal cells constitute the intestinal stem cell niche. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 175–188. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Ariyama, H.; Stancikova, J.; Sakitani, K.; Asfaha, S.; Renz, B.W.; Dubeykovskaya, Z.A.; Shibata, W.; Wang, H.; Westphalen, C.B.; et al. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell 2015, 28, 800–814. [Google Scholar] [CrossRef]
- Hibdon, E.S.; Samuelson, L.C. Cellular Plasticity in the Stomach: Insights into the Cellular Origin of Gastric Metaplasia. Gastroenterology 2018, 154, 801–803. [Google Scholar] [CrossRef]
- Burclaff, J.; Willet, S.G.; Sáenz, J.B.; Mills, J.C. Proliferation and Differentiation of Gastric Mucous Neck and Chief Cells During Homeostasis and Injury-Induced Metaplasia. Gastroenterology 2020, 158, 598–609.e5. [Google Scholar] [CrossRef] [PubMed]
- Lo, H.G.; Jin, R.U.; Sibbel, G.; Liu, D.; Karki, A.; Joens, M.S.; Madison, B.B.; Zhang, B.; Blanc, V.; Fitzpatrick, J.A.; et al. A Single Transcription Factor Is Sufficient to Induce and Maintain Secretory Cell Architecture. Genes Dev. 2017, 31, 154–171. [Google Scholar] [CrossRef]
- Xiao, S.; Zhou, L. Gastric Stem Cells: Physiological and Pathological Perspectives. Front. Cell Dev. Biol. 2020, 8, 571536. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Shivdasani, R.A. Notch Signaling in Stomach Epithelial Stem Cell Homeostasis. J. Exp. Med. 2011, 208, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Hong, F.; Wang, X.; Zhong, N.; Zhang, Z.; Lin, S.; Zhang, M.; Li, H.; Liu, Y.; Wang, Y.; Zhao, L.; et al. The Critical Role of BMP Signaling in Gastric Epithelial Cell Differentiation Revealed by Organoids. Cell Regen. 2025, 14, 18. [Google Scholar] [CrossRef]
- Alvina, F.B.; Chen, T.C.; Lim, H.Y.G.; Barker, N. Gastric Epithelial Stem Cells in Development, Homeostasis, and Regeneration. Development 2023, 150, dev201494. [Google Scholar] [CrossRef]
- Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of Stem Cells in Small Intestine and Colon by Marker Gene Lgr5. Nature 2010, 449, 1003–1007. [Google Scholar] [CrossRef]
- Hayakawa, Y.; Jin, G.; Wang, H.; Chen, X.; Westphalen, C.B.; Asfaha, S.; Renz, B.W.; Ariyama, H.; Dubeykovskaya, Z.A.; Takemoto, Y.; et al. CCK2R Identifies and Regulates Gastric Antral Stem Cell States and Carcinogenesis. Gut 2015, 64, 544–553. [Google Scholar] [CrossRef]
- Spence, J.R.; Lauf, R.; Shroyer, N.F. Vertebrate Intestinal Endoderm Development. Dev. Dyn. 2011, 240, 501–520. [Google Scholar] [CrossRef]
- Jia, Y.P.; Liu, D.C.; Cao, T.L.; Jiang, H.Z.; Li, T.; Li, Y.; Ding, X. Advances and Global Trends of Precancerous Lesions of Gastric Cancer: A Bibliometric Analysis. World J. Gastrointest. Oncol. 2025, 17, 102111. [Google Scholar] [CrossRef]
- Gullo, I.; Grillo, F.; Mastracci, L.; Vanoli, A.; Carneiro, F.; Saragoni, L.; Limarzi, F.; Ferro, J.; Parente, P.; Fassan, M. Precancerous Lesions of the Stomach, Gastric Cancer, and Hereditary Gastric Cancer Syndromes. Pathologica 2020, 112, 166–185. [Google Scholar] [CrossRef]
- White, J.R.; Banks, M. Identifying the Pre-Malignant Stomach: From Guidelines to Practice. Transl. Gastroenterol. Hepatol. 2022, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Giroux, V.; Rustgi, A.K. Metaplasia: Tissue Injury Adaptation and a Precursor to the Dysplasia-Cancer Sequence. Nat. Rev. Cancer 2017, 17, 594–604. [Google Scholar] [CrossRef]
- Wang, M.; Lou, E.; Xue, Z. The Role of Bile Acid in Intestinal Metaplasia. Front. Physiol. 2023, 14, 1115250. [Google Scholar] [CrossRef] [PubMed]
- Sugano, K.; Moss, S.F.; Kuipers, E.J. Gastric Intestinal Metaplasia: Real Culprit or Innocent Bystander as a Precancerous Condition for Gastric Cancer? Gastroenterology 2023, 165, 1352–1366.e1. [Google Scholar] [CrossRef]
- Bockerstett, K.A.; Lewis, S.A.; Wolf, K.J.; Noto, C.N.; Jackson, N.M.; Ford, E.L.; Ahn, T.H.; DiPaolo, R.J. Single-Cell Transcriptional Analyses of Spasmolytic Polypeptide-Expressing Metaplasia Arising from Acute Drug Injury and Chronic Inflammation in the Stomach. Gut 2020, 69, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Piazuelo, M.B.; Correa, P. Gastric Cancer: Overview. Gastroenterol. Clin. North Am. 2013, 42, 211–217. [Google Scholar]
- Lee, S.H.; Jang, B.; Min, J.; Contreras-Panta, E.W.; Delgado, A.G.; Piazuelo, M.B.; Choi, E.; Goldenring, J.R. Up-Regulation of Aquaporin 5 Defines Spasmolytic Polypeptide-Expressing Metaplasia and Progression to Incomplete Intestinal Metaplasia. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 199–217. [Google Scholar] [CrossRef]
- Wada, Y.; Nakajima, S.; Kushima, R.; Takemura, S.; Mori, N.; Hasegawa, H.; Nakayama, T.; Mukaisho, K.; Yoshida, A.; Umano, S.; et al. Pyloric, Pseudopyloric, and Spasmolytic Polypeptide-Expressing Metaplasias in Autoimmune Gastritis: A Case Series of 22 Japanese Patients. Virchows Arch. 2021, 479, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, M.; Kechele, D.O.; Broda, T.; Zhang, X.; Enriquez, J.R.; McCauley, H.A.; Sanchez, J.G.; McCracken, K.; Palermo, J.; Bernieh, A.; et al. Using Human Induced Pluripotent Stem Cell-Derived Organoids to Identify New Pathologies in Patients With PDX1 Mutations. Gastroenterology 2022, 163, 1053–1063.e7. [Google Scholar] [CrossRef]
- Li, W.; Zhang, T. Precancerous Pathways to Gastric Cancer: A Review of Experimental Animal Models Recapitulating the Correa Cascade. Front. Cell Dev. Biol. 2025, 13, 1620756. [Google Scholar] [CrossRef]
- Weis, V.G.; Petersen, C.P.; Mills, J.C.; Tuma, P.L.; Whitehead, R.H.; Goldenring, J.R. Establishment of Novel In Vitro Mouse Chief Cell and SPEM Cultures Identifies MAL2 as a Marker of Metaplasia in the Stomach. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G777–G792. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M.; Correa, P.; Di Mario, F.; El-Omar, E.; Fiocca, R.; Geboes, K.; Genta, R.M.; Graham, D.Y.; Hattori, T.; Malfertheiner, P.; et al. OLGA Staging for Gastritis: A Tutorial. Dig. Liver Dis. 2008, 40, 650–658. [Google Scholar] [CrossRef]
- Rugge, M.; Correa, P.; Dixon, M.F.; Hattori, T.; Leandro, G.; Lewin, K.; Riddell, R.; Sipponen, P.; Watanabe, H. Gastric Dysplasia: The Padova International Classification. Am. J. Surg. Pathol. 2000, 24, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Uemura, N.; Okamoto, S.; Yamamoto, S.; Matsumura, N.; Yamaguchi, S.; Yamakido, M.; Taniyama, K.; Sasaki, N.; Schlemper, R.J. Helicobacter pylori Infection and the Development of Gastric Cancer. N. Engl. J. Med. 2001, 345, 784–789. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, Q.K.; Roy, S.; Mills, J.C.; Jin, R.U. Shared Features of Metaplasia and the Development of Adenocarcinoma in the Stomach and Esophagus. Front. Cell Dev. Biol. 2023, 11, 1151790. [Google Scholar] [CrossRef]
- Huh, W.J.; Khurana, S.S.; Geahlen, J.H.; Kohli, K.; Waller, R.A.; Mills, J.C. Tamoxifen Induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology 2012, 142, 21–24.e7. [Google Scholar] [CrossRef]
- He, L.; Zhang, X.; Zhang, S.; Wang, Y.; Hu, W.; Li, J.; Liu, Y.; Liao, Y.; Peng, X.; Li, J.; et al. H. pylori-Facilitated TERT/Wnt/β-Catenin Triggers Spasmolytic Polypeptide-Expressing Metaplasia and Oxyntic Atrophy. Adv. Sci. 2025, 12, e2401227. [Google Scholar] [CrossRef] [PubMed]
- Goldenring, J.R. Pyloric metaplasia, pseudopyloric metaplasia, ulcer-associated cell lineage and spasmolytic polypeptide-expressing metaplasia: Reparative lineages in the gastrointestinal mucosa. J. Pathol. 2018, 245, 132–137. [Google Scholar] [CrossRef]
- Rugge, M.; Sacchi, D.; Genta, R.M.; Zanco, F.; Guzzinati, S.; Pizzi, M.; Fassan, M.; Di Sabatino, A.; El-Serag, H. Histological assessment of gastric pseudopyloric metaplasia: Intra- and inter-observer consistency. Dig Liver Dis. 2021, 53, 61–65. [Google Scholar] [CrossRef]
- Weis, V.G.; Sousa, J.F.; LaFleur, B.J.; Nam, K.T.; Weis, J.A.; Finke, P.E.; Ameen, N.A.; Fox, J.G.; Goldenring, J.R. Heterogeneity in Mouse Spasmolytic Polypeptide-Expressing Metaplasia Lineages Identifies Markers of Metaplastic Progression. Gut 2013, 62, 1270–1279. [Google Scholar] [CrossRef]
- Saenz, J.B.; Burclaff, J.; Mills, J.C. Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss. Gastroenterology 2016, 150, 1120–1132.e12. [Google Scholar] [CrossRef]
- Noto, C.N.; Hoft, S.G.; Bockerstett, K.A.; Jackson, N.M.; Ford, E.L.; Vest, L.S.; DiPaolo, R.J. IL13 Acts Directly on Gastric Epithelial Cells to Promote Metaplasia Development During Chronic Gastritis. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 623–642. [Google Scholar] [CrossRef]
- Petersen, C.P.; Mills, J.C.; Goldenring, J.R. Murine Models of Gastric Corpus Preneoplasia. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 11–26. [Google Scholar] [CrossRef]
- Takaishi, S.; Okumura, T.; Tu, S.; Wang, S.S.; Shibata, W.; Vigneshwaran, R.; Gordon, S.A.; Shimada, Y.; Wang, T.C. Identification of Gastric Cancer Stem Cells Using the Cell Surface Marker CD44. Stem Cells 2009, 27, 1006–1020. [Google Scholar] [CrossRef] [PubMed]
- Leys, C.M.; Nomura, S.; Rudzinski, E.; Kaminishi, M.; Montgomery, E.; Washington, M.K.; Goldenring, J.R. Expression of Pdx-1 in Human Gastric Metaplasia and Gastric Adenocarcinoma. Hum. Pathol. 2006, 37, 1162–1168. [Google Scholar] [CrossRef]
- Meyer, A.R.; Goldenring, J.R. Injury, Repair, Inflammation and Metaplasia in the Stomach. J. Physiol. 2018, 596, 3861–3867. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Fox, J.G.; Wang, T.C. Isthmus Stem Cells Are the Origins of Metaplasia in the Gastric Corpus. Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, H.; Hayakawa, Y.; Niu, Z.; Konishi, M.; Hata, M.; Tsuboi, M.; Hayata, Y.; Hikiba, Y.; Ihara, S.; Nakagawa, H.; et al. Mature Gastric Chief Cells Are Not Required for the Development of Metaplasia. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 314, G583–G596. [Google Scholar] [CrossRef] [PubMed]
- Karam, S.M. Lineage Commitment and Maturation of Epithelial Cells in the Gut. Front. Biosci. 2000, 5, D270–D280. [Google Scholar] [CrossRef]
- Goldenring, J.R.; Ray, G.S.; Coffey, R.J.; Meunier, P.C.; Haley, P.J.; Barnes, T.B.; Car, B.D. Reversible Drug-Induced Oxyntic Atrophy in Rats. Gastroenterology 2000, 118, 1080–1093. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.N.; Dong, M.; Chen, X.; Wang, X.; Zhang, W.; Xue, Y.; Ma, Z.; Gao, L.; Liu, X.; et al. Clinical Significance of SPEM and IM in Epstein–Barr Virus-Associated and EBV-Negative Gastric Cancer. Hum. Pathol. 2017, 63, 128–138. [Google Scholar] [CrossRef]
- Messal, H.A.; Cremona, C.A.; Lan, L.; Behrens, A. Paligenosis: Prepare to Regenerate! EMBO J. 2018, 37, e99206. [Google Scholar] [CrossRef]
- Saenz, J.B.; Mills, J.C. Acid and the Basis for Cellular Plasticity and Reprogramming in Gastric Repair and Cancer. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 257–273. [Google Scholar] [CrossRef]
- Brown, J.W.; Cho, C.J.; Mills, J.C. Paligenosis: Cellular Remodeling During Tissue Repair. Annu. Rev. Physiol. 2022, 84, 461–483. [Google Scholar] [CrossRef]
- Han, M.; Rajput, C.; Hong, J.Y.; Lei, J.; Hinde, J.L.; Wu, Q.; Bentley, J.K.; Hershenson, M.B. The Innate Cytokines IL-25, IL-33, and TSLP Cooperate in the Induction of Type 2 Innate Lymphoid Cell Expansion and Mucous Metaplasia in Rhinovirus-Infected Immature Mice. J. Immunol. 2017, 199, 1308–1318. [Google Scholar] [CrossRef]
- Petersen, C.P.; Meyer, A.R.; De Salvo, C.; Choi, E.; Schlegel, C.; Petersen, A.; Engevik, A.C.; Prasad, N.; Levy, S.E.; Peebles, R.S.; et al. A signalling cascade of IL-33 to IL-13 regulates metaplasia in the mouse stomach. Gut 2018, 67, 805–817. [Google Scholar] [CrossRef]
- Meyer, A.R.; Engevik, A.C.; Madorsky, T.; Belmont, E.; Stier, M.T.; Norlander, A.E.; Pilkinton, M.A.; McDonnell, W.J.; Weis, J.A.; Jang, B.; et al. Group 2 Innate Lymphoid Cells Coordinate Damage Response in the Stomach. Gastroenterology 2020, 159, 2077–2091.e8. [Google Scholar] [CrossRef]
- Contreras-Panta, E.W.; Lee, S.H.; Won, Y.; Norlander, A.E.; Simmons, A.J.; Peebles, R.S., Jr.; Lau, K.S.; Choi, E.; Goldenring, J.R. Interleukin 13 Promotes Maturation and Proliferation in Metaplastic Gastroids. Cell. Mol. Gastroenterol. Hepatol. 2024, 18, 101366. [Google Scholar] [CrossRef]
- Goldenring, J.R.; Nam, K.T.; Wang, T.C.; Mills, J.C.; Wright, N.A. Spasmolytic Polypeptide-Expressing Metaplasia and Intestinal Metaplasia: Time for Re-Evaluation of Metaplasias in the Pathogenesis of Gastric Cancer. Gastroenterology 2010, 138, 2207–2210. [Google Scholar] [CrossRef]
- Radyk, M.D.; Burclaff, J.; Willet, S.G.; Mills, J.C. Metaplastic Cells in the Stomach Arise, Independently of Stem Cells, via Dedifferentiation or Transdifferentiation of Terminally Differentiated Cells. Gastroenterology 2018, 154, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Bertaux-Skeirik, N.; Wunderlich, M.; Teal, E.; Chakrabarti, J.; Biesiada, J.; Mahe, M.; Sundaram, N.; Gabre, J.; Hawkins, J.; Jian, G.; et al. CD44 variant isoform 9 emerges in response to injury and contributes to the regeneration of the gastric epithelium. J. Pathol. 2017, 242, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Suzuki, H.; Imaeda, H.; Matsuzaki, J.; Tsugawa, H.; Nagano, O.; Asakura, K.; Saya, H.; Hibi, T. CD44 variant 9 expression in primary early gastric cancer as a predictive marker for recurrence. Br. J. Cancer 2013, 109, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhu, Y.; Ma, Y.; Wang, Z.; Xu, G. Emerging role of spasmolytic polypeptide-expressing metaplasia in gastric cancer. J. Gastrointest. Oncol. 2024, 15, 2673–2683. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Zhou, X.Y.; Wang, H.M.; Xu, H.; Chen, J.; Lv, N.H. Aquaporin 5 Promotes the Proliferation and Migration of Human Gastric Carcinoma Cells. Tumour Biol. 2013, 34, 1743–1751. [Google Scholar] [CrossRef]
- Li, N.; Xu, X.; Yang, H.; Wang, H.; Ouyang, Y.; Zhou, Y.; Peng, C.; Yuan, Z.; He, C.; Zeng, C.; et al. Activation of Aquaporin 5 by carcinogenic Helicobacter pylori infection promotes epithelial-mesenchymal transition via the MEK/ERK pathway. Helicobacter 2021, 26, e12842. [Google Scholar] [CrossRef]
- Petersen, C.P.; Weis, V.G.; Nam, K.T.; Sousa, J.F.; Fingleton, B.; Goldenring, J.R. Macrophages Promote Progression of Spasmolytic Polypeptide-Expressing Metaplasia After Acute Loss of Parietal Cells. Gastroenterology 2014, 146, 1727–1738.e8. [Google Scholar] [CrossRef]
- Saenz, J.B.; Vargas, N.; Mills, J.C. Tropism for Spasmolytic Polypeptide-Expressing Metaplasia Allows Helicobacter pylori to Expand its Intracellular Niche in the Stomach. Gastroenterology 2019, 156, 210–224.e7. [Google Scholar] [CrossRef]
- Willet, S.G.; Lewis, M.A.; Miao, Z.F.; Valasek, M.A.; Gagner, J.E.; Pal, P.; Hayakawa, Y.; Stancikova, J.; Peyer, J.P.; Hashimoto, T.; et al. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J. 2018, 37, e98311. [Google Scholar] [CrossRef]
- Shimizu, T.; Choi, E.; Petersen, C.P.; Noto, J.M.; Romero-Gallo, J.; Piazuelo, M.B.; Washington, M.K.; Peek, R.M., Jr.; Goldenring, J.R. Characterization of Progressive Metaplasia in the Gastric Corpus Mucosa of Mongolian Gerbils Infected with Helicobacter pylori. J. Pathol. 2016, 239, 399–410. [Google Scholar] [CrossRef]
- Choi, E.; Hendley, A.M.; Bailey, J.M.; Pearce, S.P.; Yamada, K.; Lee, H.; Mills, J.C.; Wang, T.C.; Goldenring, J.R. Expression of Activated Ras in Gastric Chief Cells of Mice Leads to the Full Spectrum of Metaplastic Lineage Transitions. Gastroenterology 2016, 150, 918–930. [Google Scholar] [CrossRef] [PubMed]
- Vange, P.; Bruland, T.; Munkvold, B.; Røyset, E.S.; Gleave, M.; Bakke, I. Subtle Protective Roles of Clusterin in Gastric Metaplasia After Acute Oxyntic Atrophy. Cell. Mol. Gastroenterol. Hepatol. 2019, 7, 246–250.e1. [Google Scholar] [CrossRef]
- Lee, C.; Lee, H.; Hwang, S.Y.; Moon, C.M.; Hong, S.N. IL-10 Plays a Pivotal Role in Tamoxifen-Induced Spasmolytic Polypeptide-Expressing Metaplasia in Gastric Mucosa. Gut Liver 2017, 11, 789–797. [Google Scholar] [CrossRef] [PubMed]
- Goldenring, J.R. Spasmolytic Polypeptide-Expressing Metaplasia (SPEM) Cell Lineages Can Be an Origin of Gastric Cancer. J. Pathol. 2023, 260, 109–111. [Google Scholar] [CrossRef]
- Tan, L.; Yan, M.; Su, Z.; Wang, H.; Li, H.; Zhao, X.; Liu, S.; Zhang, L.; Sun, Q.; Lu, D. R-spondin-1 induces Axin degradation via the LRP6-CK1ε axis. Cell Commun. Signal. 2024, 22, 14. [Google Scholar] [CrossRef]
- Duan, Y.; Xu, Y.; Dou, Y.; Xu, D. Helicobacter pylori and Gastric Cancer: Mechanisms and New Perspectives. J. Hematol. Oncol. 2025, 18, 10. [Google Scholar] [CrossRef]
- Patel, T.N.; Roy, S.; Ravi, R. Gastric Cancer and Related Epigenetic Alterations. Ecancermedicalscience 2017, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Messina, B.; Lo Sardo, F.; Scalera, S.; Memeo, L.; Colarossi, C.; Mare, M.; Blandino, G.; Ciliberto, G.; Maugeri-Saccà, M.; Bon, G. Hippo Pathway Dysregulation in Gastric Cancer: From Helicobacter pylori Infection to Tumor Promotion and Progression. Cell Death Dis. 2023, 14, 21. [Google Scholar] [CrossRef]
- Li, Y.; Lu, L.; Wu, X.; Li, Q.; Zhao, Y.; Du, F.; Chen, Y.; Shen, J.; Xiao, Z.; Wu, Z.; et al. The Multifaceted Role of Long Non-Coding RNA in Gastric Cancer: Current Status and Future Perspectives. Int. J. Biol. Sci. 2021, 17, 2737–2755. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, D.; Barker, N.; Ernst, M.; Vincan, E.; Phesse, T. The Function of Lgr5+ Cells in the Gastric Antrum Does Not Require Fzd7 or Myc In Vivo. Biomedicines 2019, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Zhang, Z.; Pu, Y.; Han, G.; Gong, H.; Hu, H.; Ji, Q.; Liu, N. RSPO3 Induced by Helicobacter pylori Extracts Promotes Gastric Cancer Stem Cell Properties through the GNG7/β-Catenin Signaling Pathway. Cancer Med. 2024, 13, e7092. [Google Scholar] [CrossRef]
- Shibata, W.; Ariyama, H.; Westphalen, C.B.; Worthley, D.L.; Muthupalani, S.; Asfaha, S.; Dubeykovskaya, Z.; Quante, M.; Fox, J.G.; Wang, T.C. Stromal cell-derived factor-1 overexpression induces gastric dysplasia through expansion of stromal myofibroblasts and epithelial progenitors. Gut 2013, 62, 192–200. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. Natural history of Helicobacter pylori infection. Gastroenterology 2010, 139, 1082–1092. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, M.; Shi, F.; Zheng, S.; Xiong, L.; Zheng, L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front. Cell. Infect. Microbiol. 2023, 13, 1062803. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Forma, A.; Sitarz, M.; Portincasa, P.; Garruti, G.; Krasowska, D.; Maciejewski, R. Helicobacter pylori Virulence Factors—Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells 2020, 10, 27. [Google Scholar] [CrossRef]
- Sukri, A.; Hanafiah, A.; Kosai, N.R. The Roles of Immune Cells in Gastric Cancer: Anti-Cancer or Pro-Cancer? Cancers 2022, 14, 3922. [Google Scholar] [CrossRef]
- Fischer, A.S.; Müllerke, S.; Arnold, A.; Heuberger, J.; Berger, H.; Lin, M.; Mollenkopf, H.J.; Wizenty, J.; Horst, D.; Tacke, F.; et al. R-spondin/YAP Axis Promotes Gastric Oxyntic Gland Regeneration and Helicobacter pylori–Associated Metaplasia in Mice. J. Clin. Invest. 2022, 132, e151363. [Google Scholar] [CrossRef]
- Soroorikia, S.; Kazeminia, M.; Qaderi, K.; Ziapour, A.; Hodhodi, T.; Javanbakht, Z. Global Prevalence of Gastric Intestinal Metaplasia: A Systematic Review and Meta-Analysis. Syst. Rev. 2024, 13, 247. [Google Scholar] [CrossRef] [PubMed]
- Correa, P.; Haenszel, W.; Cuello, C.; Tannenbaum, S.; Archer, M. A model for gastric cancer epidemiology. Lancet 1975, 2, 58–60. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.; Tan, M.C.; Liu, Y.; Rugge, M.; Thrift, A.P.; El-Serag, H.B. Prevalence of Gastric Intestinal Metaplasia in a Multiethnic US Veterans Population. Clin. Gastroenterol. Hepatol. 2021, 19, 269–276.e3. [Google Scholar] [CrossRef]
- Jass, J.R.; Filipe, M.I. A variant of intestinal metaplasia associated with gastric carcinoma: A histochemical study. Histopathology 1979, 3, 191–199. [Google Scholar] [CrossRef]
- Koulis, A.; Di Costanzo, N.; Mitchell, C.; Lade, S.; Goode, D.; Busuttil, R.A.; Boussioutas, A. CD10 and Das1: A Biomarker Study Using Immunohistochemistry to Subtype Gastric Intestinal Metaplasia. BMC Gastroenterol. 2022, 22, 197. [Google Scholar] [CrossRef]
- Babu, S.D.; Jayanthi, V.; Devaraj, N.; Reis, C.A.; Devaraj, H. Expression profile of mucins (MUC2, MUC5AC and MUC6) in Helicobacter pylori-infected pre-neoplastic and neoplastic human gastric epithelium. Mol. Cancer 2006, 5, 10. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Zhang, J.P.; Yang, J.Y.; Zhao, Z.M.; Zhang, X.Y. Expression of p53, c-erbB-2 and Ki67 in intestinal metaplasia and gastric carcinoma. World J. Gastroenterol. 2010, 16, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Ikehara, Y.; Nakanishi, H.; Tanaka, H.; Inada, K.; Tsukamoto, T.; Ichinose, M.; Tatematsu, M. Mixed gastric- and intestinal-type metaplasia is formed by cells with dual intestinal and gastric differentiation. J. Histochem. Cytochem. 2005, 53, 75–85. [Google Scholar] [CrossRef]
- Jeong, H.; Lee, B.; Kim, K.H.; Cho, S.Y.; Cho, Y.; Park, J.; Lee, Y.; Oh, Y.; Hwang, B.R.; Jang, A.R.; et al. WFDC2 Promotes Spasmolytic Polypeptide-Expressing Metaplasia Through the Up-Regulation of IL33 in Response to Injury. Gastroenterology 2021, 161, 953–967.e15. [Google Scholar] [CrossRef]
- Craanen, M.E.; Blok, P.; Dekker, W.; Ferwerda, J.; Tytgat, G.N. Subtypes of intestinal metaplasia and Helicobacter pylori. Gut 1992, 33, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Song, J.Y.; Kim, B.W.; Lee, A.W.; Lee, K.Y.; Chung, I.S.; Lee, B.I.; Choi, H.; Ji, J.S.; Chae, H.S.; Choi, K.Y. Expression of MUC5AC and Trefoil Peptide 1 (TFF1) in the Subtypes of Intestinal Metaplasia. Clin. Endosc. 2012, 45, 151–154. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, C.; Wang, C.; Hu, C.; Czajkowsky, D.M.; Guo, Y.; Liu, B.; Shao, Z. Evidence for Heightened Genetic Instability in Precancerous Spasmolytic Polypeptide Expressing Gastric Glands. J. Med. Genet. 2020, 57, 385–388. [Google Scholar] [CrossRef]
- Camilo, V.; Garrido, M.; Valente, P.; Ricardo, S.; Amaral, A.L.; Barros, R.; Chaves, P.; Carneiro, F.; David, L.; Almeida, R. Differentiation Reprogramming in Gastric Intestinal Metaplasia and Dysplasia: Role of SOX2 and CDX2. Histopathology 2015, 66, 343–350. [Google Scholar] [CrossRef]
- Xu, X.; Yan, C.; Bian, L.; Li, Z.; Yu, Y.; Zhu, X.; Gao, Y.; Xu, H.; Li, F.; Liu, Y.; et al. Genomic Analyses Reveal the Evolving Characteristics of Intestinal Metaplasia and Gastric Cancer. Cancer Res. 2025, 85, 3123–3138. [Google Scholar] [CrossRef]
- Engevik, A.C.; Feng, R.; Choi, E.; White, S.; Bertaux-Skeirik, N.; Li, J.; Mahe, M.M.; Aihara, E.; Yang, L.; DiPasquale, B.; et al. The Development of Spasmolytic Polypeptide/TFF2-Expressing Metaplasia (SPEM) During Gastric Repair Is Absent in the Aged Stomach. Cellular Mol. Gastroenterol. Hepatol. 2016, 2, 605–624. [Google Scholar] [CrossRef]
- Nozaki, K.; Ogawa, M.; Williams, J.A.; Lafleur, B.J.; Ng, V.; Drapkin, R.I.; Mills, J.C.; Konieczny, S.F.; Nomura, S.; Goldenring, J.R. A molecular signature of gastric metaplasia arising in response to acute parietal cell loss. Gastroenterology 2008, 134, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Huang, K.K.; Rebbani, K.; Das, K.; Fazreen, Z.; Yeoh, K.G.; Tan, P.; Teh, M. An LCM-based genomic analysis of SPEM, Gastric Cancer and Pyloric Gland Adenoma in an Asian cohort. Mod. Pathol. 2020, 33, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Tjandra, D.; Busuttil, R.A.; Boussioutas, A. Gastric Intestinal Metaplasia: Challenges and the Opportunity for Precision Prevention. Cancers 2023, 15, 3913. [Google Scholar] [CrossRef]
- Fujiwara-Tani, R.; Takagi, T.; Mori, S.; Kishi, S.; Nishiguchi, Y.; Sasaki, T.; Ikeda, M.; Nagai, K.; Bhawal, U.K.; Ohmori, H.; et al. Short Telomere Lesions with Dysplastic Metaplasia Histology May Represent Precancerous Lesions of Helicobacter pylori-Positive Gastric Mucosa. Int. J. Mol. Sci. 2023, 24, 3182. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, J.; Jeong, I.H.; Park, E.; Yoo, M.; Yoon, S.; Lee, D.; Myung, J.; Choi, E.; Goldenring, J.R.; et al. Hybrid identity and distinct methylation profiles of incomplete intestinal metaplasia in the stomach. Gut 2025, 1–14. [Google Scholar] [CrossRef]
- Nishizawa, T.; Suzuki, H. The Role of microRNA in Gastric Malignancy. Int. J. Mol. Sci. 2013, 14, 9487–9496. [Google Scholar] [CrossRef]
- Du, S.; Yang, Y.; Fang, S.; Guo, S.; Xu, C.; Zhang, P.; Wei, W. Gastric Cancer Risk of Intestinal Metaplasia Subtypes: A Systematic Review and Meta-Analysis of Cohort Studies. Clin. Transl. Gastroenterol. 2021, 12, e00402. [Google Scholar] [CrossRef]
- González, C.A.; Sanz-Anquela, J.M.; Gisbert, J.P.; Correa, P. Utility of Subtyping Intestinal Metaplasia as Marker of GC Risk. J. Clin. Pathol. 2013, 66, 979–983. [Google Scholar] [CrossRef]
- Akbari, M.; Tabrizi, R.; Kardeh, S.; Lankarani, K.B. Gastric Cancer in Patients with Gastric Atrophy and Intestinal Metaplasia: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0219865. [Google Scholar] [CrossRef]
- González, C.A.; Sanz-Anquela, J.M.; Companioni, O.; Bonet, C.; Berdasco, M.; López, C.; Mendoza, J.; Martín-Arranz, M.D.; Rey, E.; Poves, E.; et al. Incomplete Type of Intestinal Metaplasia Has the Highest Risk to Progress to Gastric Cancer: Results of the Spanish Follow-Up Multicenter Study. J. Gastroenterol. Hepatol. 2016, 31, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Jun, J.K.; Lee, H.Y.; Park, S.; Jung, K.W.; Han, M.A.; Choi, I.J. Gastric Cancer Screening in Korea: Report on the National Cancer Screening Program. J. Korean Med. Sci. 2018, 33, e79. [Google Scholar] [CrossRef]
- Wei, N.; Zhou, M.; Lei, S.; Liu, K.; Wang, Y.; Zhao, L.; Zhang, J. A Meta-Analysis and Systematic Review on Subtypes of Gastric Intestinal Metaplasia and Neoplasia Risk. Cancer Cell Int. 2021, 21, 173. [Google Scholar] [CrossRef]
- Pimentel-Nunes, P.; Libânio, D.; Bastiaansen, B.A.J.; Bhandari, P.; Bisschops, R.; Bourke, M.J.; Esposito, G.; Lemmers, A.; Maselli, R.; Messmann, H.; et al. Endoscopic Submucosal Dissection for Superficial Gastrointestinal Lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline—Update 2022. Endoscopy 2022, 54, 591–622. [Google Scholar] [CrossRef]
- Banks, M.; Graham, D.; Jansen, M.; Travis, S.; Moss, S.; Mannath, J.; Bhandari, P.; Attwood, S.; Knight, S.; Riley, S.; et al. British Society of Gastroenterology Guidelines on the Diagnosis and Management of Patients at Risk of Gastric Adenocarcinoma. Gut 2019, 68, 1545–1575. [Google Scholar] [CrossRef]
- Dinis-Ribeiro, M.; Libânio, D.; Uchima, H.; Spaander, M.C.W.; Bornschein, J.; Matysiak-Budnik, T.; Tziatzios, G.; Santos-Antunes, J.; Areia, M.; Chapelle, N.; et al. Management of Epithelial Precancerous Conditions and Early Neoplasia of the Stomach (MAPS III): European Society of Gastrointestinal Endoscopy (ESGE), European Helicobacter and Microbiota Study Group (EHMSG) and European Society of Pathology (ESP) Guideline Update 2025. Endoscopy 2025, 57, 504–554. [Google Scholar] [CrossRef]
- Leushacke, M.; Tan, S.H.; Wong, A.; Swathi, Y.; Hajamohideen, A.; Tan, L.T.; Goh, J.; Wong, E.; Denil, S.; Murakami, K.; et al. Lgr5-Expressing Chief Cells Drive Epithelial Regeneration and Cancer in the Oxyntic Stomach. Nat. Cell Biol. 2017, 19, 774–786. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Teh, M.; Ito, K.; Shah, N.; Ito, Y.; Yeoh, K.G. CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer. Mod. Pathol. 2007, 20, 1286–1297. [Google Scholar] [CrossRef]
- Nakamura, T.; Tsuchiya, K.; Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol. 2007, 42, 705–710. [Google Scholar] [CrossRef]
- Yu, T.; Chen, X.; Lin, T.; Liu, J.; Li, M.; Zhang, W.; Xu, X.; Zhao, W.; Liu, M.; Napier, D.L.; et al. KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis. 2016, 7, e2255. [Google Scholar] [CrossRef]
- Ni, Z.; Min, Y.; Han, C.; Yuan, T.; Lu, W.; Ashktorab, H.; Smoot, D.T.; Wu, Q.; Wu, J.; Zeng, W.; et al. TGR5-HNF4α axis contributes to bile acid-induced gastric intestinal metaplasia markers expression. Cell Death Discov. 2020, 6, 56. [Google Scholar] [CrossRef]
- Zheng, H.; Pritchard, D.M.; Yang, X.; Bennett, E.; Liu, G.; Liu, C.; Ai, W. KLF4 Gene Expression Is Inhibited by the Notch Signaling Pathway That Controls Goblet Cell Differentiation in Mouse Gastrointestinal Tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G490–G498. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, W.; Zeng, L.; Zhou, Y.; Zhang, Q.; Wang, J.; Liu, X. OLFM4 Promotes the Progression of Intestinal Metaplasia through Activation of the MYH9/GSK3β/β-Catenin Pathway. Mol. Cancer 2024, 23, 124. [Google Scholar] [CrossRef]
- Cover, T.L.; Lacy, D.B.; Ohi, M.D. The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol. 2020, 28, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Pucułek, M.; Machlowska, J.; Wierzbicki, R.; Baj, J.; Maciejewski, R.; Sitarz, R. Helicobacter pylori Associated Factors in the Development of Gastric Cancer with Special Reference to the Early-Onset Subtype. Oncotarget 2018, 9, 31146–31162. [Google Scholar] [CrossRef]
- Murata-Kamiya, N.; Kikuchi, K.; Hayashi, T.; Higashi, H.; Hatakeyama, M. Helicobacter pylori CagA Interacts with E-Cadherin and Deregulates the β-Catenin Signaling Pathway. Science 2007, 317, 1093–1097. [Google Scholar] [CrossRef]
- Vahidi, S.; Mirzajani, E.; Norollahi, S.E.; Aziminezhad, M.; Samadani, A.A. Performance of DNA Methylation on the Molecular Pathogenesis of Helicobacter pylori in Gastric Cancer; Targeted Therapy Approach. J. Pharmacopunct. 2022, 25, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Drnovšek, J.; Homan, M.; Zidar, N.; Šmid, L.M. Pathogenesis and Potential Reversibility of Intestinal Metaplasia—A Milestone in Gastric Carcinogenesis. Radiol. Oncol. 2024, 58, 186–195. [Google Scholar] [CrossRef]
- Huang, K.K.; Ramnarayanan, K.; Zhu, F.; Liu, W.; Chen, Z.; Wu, J.; Wang, L.; Hara, T.; Yue, Y.; Yu, J.; et al. Genomic and Epigenomic Profiling of High-Risk Intestinal Metaplasia Reveals Molecular Determinants of Progression to Gastric Cancer. Cancer Cell 2018, 33, 137–150.e5. [Google Scholar] [CrossRef]
- Businello, G.; Angerilli, V.; Parente, P.; Realdon, S.; Savarino, E.; Farinati, F.; Grillo, F.; Vanoli, A.; Galuppini, F.; Paccagnella, S.; et al. Molecular Landscapes of Gastric Pre-Neoplastic and Pre-Invasive Lesions. Int. J. Mol. Sci. 2021, 22, 9950. [Google Scholar] [CrossRef]
- Yakirevich, E.; Resnick, M.B. Pathology of Gastric Cancer and Its Precursor Lesions. Gastroenterol. Clin. 2013, 42, 261–284. [Google Scholar] [CrossRef]
- Koulis, A.; Buckle, A.; Boussioutas, A. Premalignant Lesions and Gastric Cancer: Current Understanding. World J. Gastrointest. Oncol. 2019, 11, 665–678. [Google Scholar] [CrossRef]
- Lin, R.; Li, C.; Liu, Z.; Wu, R.; Lu, J. Genome-Wide DNA Methylation Profiling Identifies Epigenetic Signatures of Gastric Cardiac Intestinal Metaplasia. J. Transl. Med. 2020, 18, 292. [Google Scholar] [CrossRef]
- Cortés-Márquez, A.C.; Mendoza-Elizalde, S.; Arenas-Huertero, F.; Trillo-Tinoco, J.; Valencia-Mayoral, P.; Consuelo-Sánchez, A.; Zarate-Franco, J.; Dionicio-Avendaño, A.R.; Herrera-Esquivel, J.J.; Recinos-Carrera, E.G.; et al. Differential Expression of miRNA-146a and miRNA-155 in Gastritis Induced by Helicobacter pylori Infection in Paediatric Patients, Adults, and an Animal Model. BMC Infect. Dis. 2018, 18, 463. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Q.; Li, T.; Liu, C.; Xue, L.; Ding, J.; Shi, Y.; Fan, D. The miR-17-92 Cluster as a Potential Biomarker for the Early Diagnosis of Gastric Cancer: Evidence and Literature Review. Oncotarget 2017, 8, 45060–45071. [Google Scholar] [CrossRef]
- Shen, J.; Xiao, Z.; Wu, W.K.K.; Wang, M.H.; To, K.F.; Chen, Y.; Yang, W.; Li, M.S.M.; Shin, V.Y.; Tong, J.H.; et al. Epigenetic Silencing of miR-490-3p Reactivates the Chromatin Remodeler SMARCD1 to Promote Helicobacter pylori-Induced Gastric Carcinogenesis. Cancer Res. 2015, 75, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Han, T.S.; Sohn, Y.; Shimizu, T.; Choi, B.; Bae, S.W.; Hur, K.; Kong, S.H.; Suh, Y.S.; Lee, H.J.; et al. microRNA-30a Arbitrates Intestinal-Type Early Gastric Carcinogenesis by Directly Targeting ITGA2. Gastric Cancer 2020, 23, 600–613. [Google Scholar] [CrossRef]
- Huang, X.; Ma, Z.; Qin, W. Screening and Bioinformatics Analyses of Key miRNAs Associated with Toll-like Receptor Activation in Gastric Cancer Cells. Medicina 2023, 59, 511. [Google Scholar] [CrossRef]
- Almeida, R.; Almeida, J.; Shoshkes, M.; Mendes, N.; Mesquita, P.; Silva, E.; Van Seuningen, I.; Reis, C.A.; Santos-Silva, F.; David, L. OCT-1 Is Over-Expressed in Intestinal Metaplasia and Intestinal Gastric Carcinomas and Binds to, but Does Not Transactivate, CDX2 in Gastric Cells. J. Pathol. 2005, 207, 396–401. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, N.; Lee, H.S.; Kang, J.M.; Park, H.K.; Jo, H.J.; Shin, C.M.; Lee, S.H.; Park, Y.S.; Hwang, J.H.; et al. The Role of CDX2 in Intestinal Metaplasia Evaluated Using Immunohistochemistry. Gut Liver 2012, 6, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Mutoh, H.; Sakurai, S.; Satoh, K.; Tamura, K.; Takahashi, H.; Osawa, H.; Hirata, K.; Sugano, K. Development of Intestinal-Type Gastric Cancer and Expression of Cdx2 in a Transgenic Mouse Model. Cancer Res. 2004, 64, 7740–7747. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, Z.A.; Elemam, I.B.; Elsheikh, M.A. Immunohistochemical Expression of CDX2 as Early Biomarkers for Gastric Intestinal Metaplasia Among Sudanese Patients with Chronic Gastritis. SAR J. Pathol. Microbiol. 2023, 4, 58–64. [Google Scholar] [CrossRef]
- Mutoh, H.; Hayakawa, H.; Sakamoto, H.; Sashikawa, M.; Sugano, K. Transgenic Cdx2 Induces Endogenous Cdx1 in Intestinal Metaplasia of Cdx2-Transgenic Mouse Stomach. FEBS J. 2009, 276, 5821–5831. [Google Scholar] [CrossRef]
- Barros, R.; Freund, J.N.; David, L.; Almeida, R. Gastric Intestinal Metaplasia Revisited: Function and Regulation of CDX2. Trends Mol. Med. 2012, 18, 555–563. [Google Scholar] [CrossRef]
- Tingstedt, J.E.; Edlund, H.; Madsen, O.D.; Larsson, L.I. Gastric Amylin Expression, Cellular Identity and Lack of Requirement for the Homeobox Protein PDX-1: A Study in Normal and PDX-1-Deficient Animals with a Cautionary Note on Antiserum Evaluation. J. Histochem. Cytochem. 1999, 47, 973–980. [Google Scholar] [CrossRef]
- Sakai, H.; Eishi, Y.; Li, X.L.; Akiyama, Y.; Miyake, S.; Takizawa, T.; Konishi, N.; Tatematsu, M.; Koike, M.; Yuasa, Y. PDX1 Homeobox Protein Expression in Pseudopyloric Glands and Gastric Carcinomas. Gut 2004, 53, 323–330. [Google Scholar] [CrossRef]
- Fukaya, M.; Isohata, N.; Ohta, Y.; Kushima, R.; Sugano, K. Hedgehog Signal Activation in Gastric Pit Cell and Adenocarcinoma. Gastroenterology 2006, 131, 131–145. [Google Scholar] [CrossRef]
- Xue, C.; Chu, Q.; Shi, Q.; Zeng, Y.; Lu, J.; Li, L. Wnt Signaling Pathways in Biology and Disease: Mechanisms and Therapeutic Advances. Signal Transduct. Target. Ther. 2025, 10, 106. [Google Scholar] [CrossRef]
- Koide, T.; Koyanagi-Aoi, M.; Uehara, K.; Kakeji, Y.; Aoi, T. CDX2-Induced Intestinal Metaplasia in Human Gastric Organoids Derived from Induced Pluripotent Stem Cells. iScience 2022, 25, 104314. [Google Scholar] [CrossRef]
- Raghoebir, L.; Bakker, E.R.; Mills, J.C.; Swagemakers, S.; Kempen, M.B.; Munck, A.B.; Driegen, S.; Meijer, D.; Grosveld, F.; Tibboel, D.; et al. SOX2 Redirects the Developmental Fate of the Intestinal Epithelium toward a Premature Gastric Phenotype. J. Mol. Cell Biol. 2012, 4, 377–385. [Google Scholar] [CrossRef]
- Kim, B.M.; Buchner, G.; Miletich, I.; Sharpe, P.T.; Shivdasani, R.A. The Stomach Mesenchymal Transcription Factor Barx1 Specifies Gastric Epithelial Identity Through Inhibition of Transient Wnt Signaling. Dev. Cell 2005, 8, 611–622. [Google Scholar] [CrossRef]
- Saberi, S.; Esmaeili, M.; Tashakoripour, M.; Eshagh Hosseini, M.; Baharvand, H.; Mohammadi, M. Infection with a Hypervirulent Strain of Helicobacter pylori Primes Gastric Cells Toward Intestinal Transdifferentiation. Microb. Pathog. 2022, 162, 105353. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Liu, G.; Xu, W.; Yang, Z.; Li, N.; Xie, C.; Zhou, C.; Chen, J.; Zhu, Y.; Hong, J.; et al. Helicobacter pylori Induces Epithelial-Mesenchymal Transition in Gastric Carcinogenesis via the AKT/GSK3β Signaling Pathway. Oncol. Lett. 2021, 21, 165. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Bedford, A.; Pollack, S. The Aberrant Expression of Biomarkers and Risk Prediction for Neoplastic Changes in Barrett’s Esophagus-Dysplasia. Cancers 2024, 16, 2386. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-González, L.; Wright, N.A. Biology of Intestinal Metaplasia in 2008: More than a Simple Phenotypic Alteration. Dig. Liver Dis. 2008, 40, 510–522. [Google Scholar] [CrossRef]
- Yang, H.; Yang, W.J.; Hu, B. Gastric Epithelial Histology and Precancerous Conditions. World J. Gastrointest. Oncol. 2022, 14, 396–412. [Google Scholar] [CrossRef]
- Botezatu, A.; Bodrug, N. Chronic Atrophic Gastritis: An Update on Diagnosis. Med. Pharm. Rep. 2021, 94, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, F.; Yuan, F.; Zhang, K.; Huo, L.; Dong, Z.; Lang, Y.; Zhang, Y.; Wang, M.; Gao, Z.; et al. Diagnosing Chronic Atrophic Gastritis by Gastroscopy Using Artificial Intelligence. Dig. Liver Dis. 2020, 52, 566–572. [Google Scholar] [CrossRef]
- Horiuchi, Y.; Aoyama, K.; Tokai, Y.; Hirasawa, T.; Yoshimizu, S.; Ishiyama, A.; Yoshio, T.; Tsuchida, T.; Fujisaki, J.; Tada, T. Convolutional Neural Network for Differentiating Gastric Cancer from Gastritis Using Magnified Endoscopy with Narrow Band Imaging. Dig. Dis. Sci. 2020, 65, 1355–1363. [Google Scholar] [CrossRef]
- Li, N.; Yang, J.; Li, X.; Shi, Y.; Wang, K. Accuracy of Artificial Intelligence-Assisted Endoscopy in the Diagnosis of Gastric Intestinal Metaplasia: A Systematic Review and Meta-Analysis. PLoS ONE 2024, 19, e0303421. [Google Scholar] [CrossRef]
- He, X.; Wu, L.; Dong, Z.; Gong, D.; Jiang, X.; Zhang, H.; Ai, Y.; Tong, Q.; Lv, P.; Lu, B.; et al. Real-Time Use of Artificial Intelligence for Diagnosing Early Gastric Cancer by Magnifying Image-Enhanced Endoscopy: A Multicenter Diagnostic Study (with Videos). Gastrointest. Endosc. 2022, 95, 671–678.e4. [Google Scholar] [CrossRef]
- Ali, H.; Muzammil, M.A.; Dahiya, D.S.; Ali, F.; Yasin, S.; Hanif, W.; Gangwani, M.K.; Aziz, M.; Khalaf, M.; Basuli, D.; et al. Artificial Intelligence in Gastrointestinal Endoscopy: A Comprehensive Review. Ann. Gastroenterol. 2024, 37, 133–141. [Google Scholar] [CrossRef]
- Boerboom, A.; Reusch, C.; Pieltain, A.; Chariot, A.; Franzen, R. KIAA1199: A novel regulator of MEK/ERK-induced Schwann cell dedifferentiation. Glia 2017, 65, 1682–1696. [Google Scholar] [CrossRef] [PubMed]
- Logan, C.Y.; Desai, T.J. Keeping it together: Pulmonary alveoli are maintained by a hierarchy of cellular programs. BioEssays 2015, 37, 1028–1037. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.E.; Li, L.; Xia, X.; Fu, W.; Liao, Q.; Lan, C.; Yang, D.; Chen, H.; Yue, R.; Zeng, C.; et al. Dedifferentiation, proliferation, and redifferentiation of adult mammalian cardiomyocytes after ischemic injury. Circulation 2017, 136, 834–848. [Google Scholar] [CrossRef]
- Buczacki, S.J.; Zecchini, H.I.; Nicholson, A.M.; Russell, R.; Vermeulen, L.; Kemp, R.; Winton, D.J. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013, 495, 65–69. [Google Scholar] [CrossRef]
- Alison, M.R. The Cellular Origins of Cancer with Particular Reference to the Gastrointestinal Tract. Int. J. Exp. Pathol. 2020, 101, 132–151. [Google Scholar] [CrossRef]
- Martinez-Uribe, O.; Becker, T.C.; Garman, K.S. Promises and Limitations of Current Models for Understanding Barrett’s Esophagus and Esophageal Adenocarcinoma. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Loe, A.K.H.; Rao-Bhatia, A.; Wei, Z.; Kim, J.E.; Guan, B.; Qin, Y.; Hong, M.; Kwak, H.S.; Liu, X.; Zhang, L.; et al. YAP Targetome Reveals Activation of SPEM in Gastric Pre-Neoplastic Progression and Regeneration. Cell Rep. 2023, 42, 113497. [Google Scholar] [CrossRef]
- Merrell, A.J.; Stanger, B.Z. Adult cell plasticity in vivo: De-differentiation and transdifferentiation are back in style. Nat. Rev. Mol. Cell Biol. 2016, 17, 413–425. [Google Scholar] [CrossRef]
- Boucherat, O.; Boczkowski, J.; Jeannotte, L.; Delacourt, C. Cellular and molecular mechanisms of goblet cell metaplasia in the respiratory airways. Exp. Lung Res. 2013, 39, 207–216. [Google Scholar] [CrossRef]
- Wada, Y.; Kushima, R.; Kodama, M.; Tanaka, H.; Mukaisho, K.; Hattori, T. Histological changes associated with pyloric and pseudopyloric metaplasia after Helicobacter pylori eradication. Virchows Arch. 2020, 477, 489–496. [Google Scholar] [CrossRef]
- Chong, Y.; Yu, D.; Lu, Z.; Nie, F. Role and Research Progress of Spasmolytic Polypeptide-Expressing Metaplasia in Gastric Cancer (Review). Int. J. Oncol. 2024, 64, 33. [Google Scholar] [CrossRef]
- Demitrack, E.S.; Samuelson, L.C. Notch as a Driver of Gastric Epithelial Cell Proliferation. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 323–330. [Google Scholar] [CrossRef]
- Goldenring, J.R.; Mills, J.C. Cellular Plasticity, Reprogramming, and Regeneration: Metaplasia in the Stomach and Beyond. Gastroenterology 2022, 162, 415–430. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Fox, J.G.; Wang, T.C. The Origins of Gastric Cancer from Gastric Stem Cells: Lessons from Mouse Models. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Chen, P.; Xu, X.; Han, M.; Li, J. Role of Gastric Microorganisms Other than Helicobacter pylori in the Development and Treatment of Gastric Diseases. Biomed. Res. Int. 2022, 2022, 6263423. [Google Scholar] [CrossRef]
- Nowicki-Osuch, K.; Zhuang, L.; Cheung, T.S.; Black, E.L.; Masqué-Soler, N.; Devonshire, G.; Redmond, A.M.; Freeman, A.; di Pietro, M.; Pilonis, N.; et al. Single-Cell RNA Sequencing Unifies Developmental Programs of Esophageal and Gastric Intestinal Metaplasia. Cancer Discov. 2023, 13, 1346–1363. [Google Scholar] [CrossRef]
- He, Z.; Hu, X.H.; He, T.Y.; Zhao, T.T. Cellular Plasticity and Fate Determination in Gastric Carcinogenesis. iScience 2024, 27, 109465. [Google Scholar] [CrossRef]
- Navashenaq, J.G.; Shabgah, A.G.; Banach, M.; Jamialahmadi, T.; Penson, P.E.; Johnston, T.P.; Sahebkar, A. The Interaction of Helicobacter pylori with Cancer Immunomodulatory Stromal Cells: New Insight into Gastric Cancer Pathogenesis. Semin. Cancer Biol. 2022, 86 Pt 3, 951–959. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.S.K.; Tong, Y.; Siu, H.C.; Ho, S.L.; Law, S.Y.K.; Tsui, W.Y.; Chan, D.; Huang, Y.; Chan, A.S.Y.; Yun, S.W.; et al. Divergent Lineage Trajectories and Genetic Landscapes in Human Gastric Intestinal Metaplasia Organoids Associated with Early Neoplastic Progression. Gut 2025, 74, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, B.; Meyer, A.R.; Weis, J.A.; Engevik, A.C.; Choi, E. Chief Cell Plasticity Is the Origin of Metaplasia following Acute Injury in the Stomach Mucosa. Gut 2022, 71, 1068–1077. [Google Scholar] [CrossRef]
- Rhodes, J.D.; Goldenring, J.R.; Lee, S.H. Regulation of Metaplasia and Dysplasia in the Stomach by the Stromal Microenvironment. Exp. Mol. Med. 2024, 56, 1322–1330. [Google Scholar] [CrossRef]
- Demitrack, E.S.; Samuelson, L.C. Notch Regulation of Gastrointestinal Stem Cells. J. Physiol. 2016, 594, 4791–4803. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, U.; Saxena, M.; O’Neill, N.K.; Saadatpour, A.; Yuan, G.C.; Herbert, Z.; Shivdasani, R.A. Dynamic Reorganization of Chromatin Accessibility Signatures During Dedifferentiation of Secretory Lineages. Cell Stem Cell 2017, 21, 738–752.e5. [Google Scholar] [CrossRef]
- Fritsche, K.; Boccellato, F.; Schlaermann, P.; Koeppel, M.; Denecke, C.; Link, A.; Malfertheiner, P.; Gut, I.; Meyer, T.F.; Berger, H. DNA Methylation in Human Gastric Epithelial Cells Defines Regional Identity Without Restricting Lineage Plasticity. Clin. Epigenet. 2022, 14, 193. [Google Scholar] [CrossRef]
- McCracken, K.W.; Cata, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; et al. Modelling Human Gastric Development with Pluripotent Stem Cells. Nature 2014, 516, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.J.; Wichmann, I.A.; Su, A.; Sathe, A.; Shum, M.V.; Grimes, S.M.; Meka, R.; Almeda, A.; Bai, X.; Shen, J.; et al. A Spatial Transcriptomic Signature of 26 Genes Resolved at Single-Cell Resolution Characterizes High-Risk Gastric Cancer Precursors. NPJ Precis. Oncol. 2025, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Short, S.; García-Tejera, R.; Schumacher, L.J.; Coutu, D.L. Next Generation Lineage Tracing and Its Applications to Unravel Development. NPJ Syst. Biol. Appl. 2025, 11, 60. [Google Scholar] [CrossRef] [PubMed]
Category | Components/Cell Types/Genes | Key Functions and Notes | References |
---|---|---|---|
Early Gastric Development | Foregut Endoderm, Progenitor Cells | Originate from endoderm; regulated by FoxA, Gata, Sox17, Mixl1 | [28,64] |
Transcription Factors: FoxA, Gata4/6, Sox2, Pdx1, Hnf1b | Guide early differentiation; FoxA promotes Pdx1; Pdx1 marks antral progenitors | [4,28] | |
Regionalization | Corpus: SOX2+GATA4+PDX1−; Antrum: SOX2+GATA4+PDX1+ | [4,28] | |
Cell Lineage Differentiation | Mucous Neck Cells → Chief Cells | Transitional lineage; neck cells express Tff2, Muc6, Gkn3 | [28,33] |
Chief Cells | MIST1+, Xbp1+; arise from mucous neck cells; can act as reserve stem cells | [28,33,61] | |
Pit/Foveolar Cells | Arise from isthmal progenitors; FOXQ1 necessary for MUC5AC production | [28,33,61] | |
Parietal Cells | Derive from shared progenitors; regulated by Notch and BMP signals | [28,33,61] | |
Endocrine Cells | Require Ascl1, Ngn3, Pdx1, Nkx6.3, Pax4/6, Arx for lineage specification | [28,33,61] | |
Stem Cells and Progenitors | Sox2+ Cells (Corpus) | Self-renewing; multipotent; most stem-like ones at base, not isthmus | [28,33,61] |
Mist1+, TROY+ Cells | Chief cell lineage with stem cell capacity | [28,33,61] | |
Lgr5+ (Antrum), Cck2r+ (+4 cells) | Antral-specific stem cells; generate all antral lineages | [28,33,61] | |
Villin+, Sox2+ (Antrum) | Rare, stem-like populations; lineage tracing shows multipotency | [28,33,61] | |
Key Transcription Factors | Spdef | Maturation of antral deep mucous cells | [28,33,61] |
Foxq1 | Pit cell MUC5AC expression | [28,33,61] | |
Xbp1, Mist1 (Bhlha15) | Chief cell maturation | [28,33,61] | |
Barx1 | Gastric mesoderm specification (esophagus/stomach boundary) | [28,33,61] | |
Signaling Pathways | Notch | Promotes progenitor maintenance; inhibits differentiation (corpus and antrum) | [28,33,59,61] |
BMP | Restricts proliferation, promotes parietal/chief cell fate | [28,33,61] | |
Hedgehog (Shh/Ihh) | Epithelial → mesenchyme signaling; supports mesenchymal differentiation | [28,33,61] | |
FGF10 → FGFR2B | Mesenchymal → epithelial signal; inhibits chief/parietal, promotes mucous cell fate | [28,33,61] | |
WNT/LGR5 | Important in antral stem cell regulation | [28,33,61] | |
Mesenchymal Transcription Factors | Bapx1, Nkx2-5, Gata3, Six2, Nr2f2, Sox9 | Pyloric specification; absence → pyloric stenosis | [28,33,61] |
Metaplasia and Injury Response | Neck–chief transitional cells, re-expression of progenitor markers | Transitional phenotypes in injury/metaplasia; evidence for plasticity | [28,33,61] |
Feature | Pyloric Metaplasia | Pseudopyloric Metaplasia | SPEM | References |
---|---|---|---|---|
Histology (H&E) | Resembles native pyloric glands | Resembles pyloric glands | Resembles pyloric glands with altered gland base | [41,86] |
MUC6 | Positive | Positive | Strongly Positive | [41,52] |
Pepsinogen I (PGI) | Negative | Positive | Variable; often downregulated | [41,82,86] |
TFF2 | Low/absent | Low | Strongly Positive | [41,82,86,87] |
GKN3 | Absent | Absent or low | Often present in mice | [52,82,88,89] |
PDX1 | Positive | Variable | Usually negative | [90,91,92] |
Location | Antrum or transitional zones | Corpus, post-injury | Corpus/fundus, post-injury | [41,86] |
Associated with injury | Not typically | Yes | Strongly associated with parietal cell loss | [41,86] |
Lineage origin | Normal antral mucous cells | Reprogrammed chief cells | Reprogrammed chief (zymogenic) cells | [41,82,87] |
Functional role | Normal mucous production | Adaptive repair response | Repair and pre-neoplastic potential | [41,89] |
Clinical relevance | Benign | Precedes IM | Considered a preneoplastic lesion | [41,87,89] |
Feature | IM | SPEM |
---|---|---|
Histological Features | Characterized by goblet cells, columnar epithelium, and sialomucin production (MUC2) [142] | Resembles antral glands, with MUC6 expression and absence of G-cells [142] |
Mucin Expression | Mucin (MUC2) expression and trefoil factor 3 (TFF3); gastric mucins (MUC1, MUC5AC, MUC6) are downregulated in Type I [143] | Strong expression of MUC6 and trefoil factor 2 (TFF2) [71,144] |
Transcription Factors | Type I: Negative for SOX2, Positive for CDX2 [142]; Types II and III: Positive for SOX2, Negative for CDX2 [145,146] | Not significantly associated with SOX2 or CDX2 expression [142,145] |
Cellular Markers | Expression of CDX2, SOX2, MUC2, MUC5AC, and MUC6 in different types of IM [146] | Strong expression of TFF2, MUC6, MUC5AC, HE4 [147,148] |
Mutations | C > T and T > G transitions in CpG sites; mutations in FBXW7, APC, TP53, and ARID1A are observed [149] | Not significantly linked to the same mutation profile; mostly associated with inflammation and cytokine signaling [148] |
Somatic Copy Number Alterations (sCNAs) | 12.5% of cases show 8q amplification (MYC oncogene) [150] | Less frequent but may be influenced by inflammatory signaling [148] |
Telomere Length | Telomere shortening observed, particularly in antral IM [151] | Not widely observed in SPEM but may be influenced by inflammatory factors [151] |
DNA Methylation | Increased DNA methylation, particularly in antral IM [152] | DNA methylation is less studied but could be involved in inflammatory pathways [149] |
miRNA Expression | Upregulation of miRNA-146a, miRNA-155, miRNA-17-92 cluster; downregulation of miRNA-490-3p, miRNA-30a [153] | Not extensively studied for specific miRNA changes; inflammatory miRNAs (e.g., miRNA-21) may be relevant [153] |
Progression to GC | IM, particularly incomplete IM (Type II and III), is associated with an increased risk of GC [154] | No direct role in GC progression but associated with inflammation and epithelial changes [148] |
SPEM and Inflammatory Pathways | Occurs in response to chronic injury, H. pylori infection, or acid reflux [114] | Strong involvement of M2 macrophages and inflammatory cytokines such as IL-6 and IL-1β [114,115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernygorodskyi, S.; Tonchev, A.B.; Bratoeva, K.Z. Gastric Epithelial Cell Plasticity and Molecular Mechanisms of Metaplastic Transformations in the Stomach. J. Mol. Pathol. 2025, 6, 24. https://doi.org/10.3390/jmp6030024
Vernygorodskyi S, Tonchev AB, Bratoeva KZ. Gastric Epithelial Cell Plasticity and Molecular Mechanisms of Metaplastic Transformations in the Stomach. Journal of Molecular Pathology. 2025; 6(3):24. https://doi.org/10.3390/jmp6030024
Chicago/Turabian StyleVernygorodskyi, Sergii, Anton B. Tonchev, and Kameliya Zhechkova Bratoeva. 2025. "Gastric Epithelial Cell Plasticity and Molecular Mechanisms of Metaplastic Transformations in the Stomach" Journal of Molecular Pathology 6, no. 3: 24. https://doi.org/10.3390/jmp6030024
APA StyleVernygorodskyi, S., Tonchev, A. B., & Bratoeva, K. Z. (2025). Gastric Epithelial Cell Plasticity and Molecular Mechanisms of Metaplastic Transformations in the Stomach. Journal of Molecular Pathology, 6(3), 24. https://doi.org/10.3390/jmp6030024