MET Exon 14 Variants in Non-Small Cell Lung Carcinoma: Prevalence, Clinicopathologic and Molecular Features
Abstract
:1. Introduction
2. Subjects and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujino, T.; Suda, K.; Mitsudomi, T. Lung Cancer with MET exon 14 Skipping Mutation: Genetic Feature, Current Treatments, and Future Challenges. Lung Cancer: Targets Ther. 2021, 12, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zou, Q.; Liu, H.; Qiu, B.; Li, Q.; Lin, Y.; Liang, Y. Management of Non-small Cell Lung Cancer Patients with MET Exon 14 Skipping Mutations. Curr. Treat. Options Oncol. 2020, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Vuong, H.G.; Ho, A.T.N.; Altibi, A.M.; Nakazawa, T.; Katoh, R.; Kondo, T. Clinicopathological implications of MET exon 14 mutations in non-small cell lung cancer—A systematic review and meta-analysis. Lung Cancer 2018, 123, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Awad, M.M.; Oxnard, G.R.; Jackman, D.M.; Savukoski, D.O.; Hall, D.; Shivdasani, P.; Heng, J.C.; Dahlberg, S.E.; Jänne, P.A.; Verma, S.; et al. MET Exon 14 Mutations in Non–Small-Cell Lung Cancer Are Associated With Advanced Age and Stage-Dependent MET Genomic Amplification and c-Met Overexpression. J. Clin. Oncol. 2016, 34, 721–730. [Google Scholar] [CrossRef]
- Schrock, A.B.; Frampton, G.M.; Suh, J.; Chalmers, Z.R.; Rosenzweig, M.; Erlich, R.L.; Halmos, B.; Goldman, J.; Forde, P.; Leuenberger, K.; et al. Characterization of 298 Patients with Lung Cancer Harboring MET Exon 14 Skipping Alterations. J. Thorac. Oncol. 2016, 11, 1493–1502. [Google Scholar] [CrossRef]
- Tong, J.H.; Yeung, S.F.; Chan, A.W.H.; Chung, L.Y.; Chau, S.L.; Lung, R.W.M.; Tong, C.Y.; Chow, C.; Tin, E.K.Y.; Yu, Y.H.; et al. MET Amplification and Exon 14 Splice Site Mutation Define Unique Molecular Subgroups of Non–Small Cell Lung Carcinoma with Poor Prognosis. Clin. Cancer Res. 2016, 22, 3048–3056. [Google Scholar] [CrossRef]
- Ou, S.-H.I.; Kwak, E.L.; Siwak-Tapp, C.; Dy, J.; Bergethon, K.; Clark, J.W.; Camidge, D.R.; Solomon, B.J.; Maki, R.G.; Bang, Y.-J.; et al. Activity of Crizotinib (PF02341066), a Dual Mesenchymal-Epithelial Transition (MET) and Anaplastic Lymphoma Kinase (ALK) Inhibitor, in a Non-small Cell Lung Cancer Patient with De Novo MET Amplification. J. Thorac. Oncol. 2011, 6, 942–946. [Google Scholar] [CrossRef]
- Jørgensen, J.T.; Mollerup, J. Companion Diagnostics and Predictive Biomarkers for MET-Targeted Therapy in NSCLC. Cancers 2022, 14, 2150. [Google Scholar] [CrossRef]
- Lung Cancer Statistics. Available online: https://www.cancer.org/cancer/lung-cancer/about/key-statistics.html (accessed on 14 February 2021).
- Salgia, R.; Sattler, M.; Scheele, J.; Stroh, C.; Felip, E. The promise of selective MET inhibitors in non-small cell lung cancer with MET exon 14 skipping. Cancer Treat. Rev. 2020, 87, 102022. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, R.; Ye, T.; Yu, S.; Hu, H.; Shen, X.; Li, Y.; Ji, H.; Sun, Y.; Chen, H. MET exon 14 skipping defines a unique molecular class of non-small cell lung cancer. Oncotarget 2016, 7, 41691–41702. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.-Y.; Gou, L.-Y.; Li, A.-N.; Lou, N.-N.; Gao, H.-F.; Su, J.; Yang, J.-J.; Zhang, X.-C.; Shao, Y.; Dong, Z.-Y.; et al. The Unique Characteristics of MET Exon 14 Mutation in Chinese Patients with NSCLC. J. Thorac. Oncol. 2016, 11, 1503–1510. [Google Scholar] [CrossRef]
- Poirot, B.; Doucet, L.; Benhenda, S.; Champ, J.; Meignin, V.; Lehmann-Che, J. MET Exon 14 Alterations and New Resistance Mutations to Tyrosine Kinase Inhibitors: Risk of Inadequate Detection with Current Amplicon-Based NGS Panels. J. Thorac. Oncol. 2017, 12, 1582–1587. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.D.; Lomboy, A.; Lawrence, C.A.; Yourshaw, M.; Bocsi, G.T.; Camidge, D.R.; Aisner, D.L. DNA-Based versus RNA-Based Detection of MET Exon 14 Skipping Events in Lung Cancer. J. Thorac. Oncol. 2019, 14, 737–741. [Google Scholar] [CrossRef]
- Wang, S.X.; Zhang, B.M.; Wakelee, H.A.; Koontz, M.Z.; Pan, M.; Diehn, M.; Kunder, C.A.; Neal, J.W. Case series of MET exon 14 skipping mutation-positive non-small-cell lung cancers with response to crizotinib and cabozantinib. Anti-Cancer Drugs 2019, 30, 537–541. [Google Scholar] [CrossRef]
- Saffroy, R.; Fallet, V.; Girard, N.; Mazieres, J.; Sibilot, D.M.; Lantuejoul, S.; Rouquette, I.; Thivolet-Bejui, F.; Vieira, T.; Antoine, M.; et al. MET exon 14 mutations as targets in routine molecular analysis of primary sarcomatoid carcinoma of the lung. Oncotarget 2017, 8, 42428–42437. [Google Scholar] [CrossRef] [PubMed]
- Filosso, P.L.; Ruffini, E.; Asioli, S.; Giobbe, R.; Macri, L.; Bruna, M.C.; Sandri, A.; Oliaro, A. Adenosquamous lung carcinomas: A histologic subtype with poor prognosis. Lung Cancer 2011, 74, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Maneenil, K.; Xue, Z.; Liu, M.; Boland, J.; Wu, F.; Stoddard, S.M.; Molina, J.; Yang, P. Sarcomatoid Carcinoma of the Lung: The Mayo Clinic Experience in 127 Patients. Clin. Lung Cancer 2018, 19, e323–e333. [Google Scholar] [CrossRef]
- Socinski, M.A.; Pennell, N.A.; Davies, K.D. METExon 14 Skipping Mutations in Non–Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations. JCO Precis. Oncol. 2021, 5, 653–663. [Google Scholar] [CrossRef]
- Awad, M.M.; Lee, J.K.; Madison, R.; Classon, A.; Kmak, J.; Frampton, G.M.; Alexander, B.M.; Venstrom, J.; Schrock, A.B. Characterization of 1,387 NSCLCs with MET exon 14 (METex14) skipping alterations (SA) and potential acquired resistance (AR) mechanisms. J. Clin. Oncol. 2020, 38, 9511. [Google Scholar] [CrossRef]
- Cohen, D.; Hondelink, L.M.; Solleveld-Westerink, N.; Uljee, S.M.; Ruano, D.; Cleton-Jansen, A.-M.; von der Thüsen, J.H.; Ramai, S.R.S.; Postmus, P.E.; van Roggen, J.F.G.; et al. Optimizing Mutation and Fusion Detection in NSCLC by Sequential DNA and RNA Sequencing. J. Thorac. Oncol. 2020, 15, 1000–1014. [Google Scholar] [CrossRef] [Green Version]
- Sabari, J.; Leonardi, G.; Shu, C.; Umeton, R.; Montecalvo, J.; Ni, A.; Chen, R.; Dienstag, J.; Mrad, C.; Bergagnini, I.; et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann. Oncol. 2018, 29, 2085–2091. [Google Scholar] [CrossRef]
- Xu, Z.; Li, H.; Dong, Y.; Cheng, P.; Luo, F.; Fu, S.; Gao, M.; Kong, L.; Che, N. Incidence and PD-L1 Expression of MET 14 Skipping in Chinese Population: A Non-Selective NSCLC Cohort Study Using RNA-Based Sequencing. OncoTargets Ther. 2020, 13, 6245–6253. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.A.; Weiss, J. Advances in the Treatment of Non–Small Cell Lung Cancer. Clin. Chest Med. 2020, 41, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.-J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients With Advanced Non-Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Kurata, T.; Chiappori, A.; Lee, K.H.; De Wit, M.; et al. Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. N. Engl. J. Med. 2018, 379, 2342–2350. [Google Scholar] [CrossRef] [PubMed]
- Imyanitov, E.N.; Iyevleva, A.G.; Levchenko, E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. 2021, 157, 103194. [Google Scholar] [CrossRef] [PubMed]
Prevalence of MET Exon 14 Mutations | 1.9% | |||||
Total patients | 44 patients: 26 men, 18 women | |||||
Mean age: 76 years | ||||||
Clinical stage available | Total 35 cases | |||||
Stage 1 and 2: 20 cases (57%) | Stage 3: 3 cases (9%) | Stage 4: 12 cases (34%) | ||||
Tumor resected | Total 19 cases | |||||
Histologic type and growth pattern | ||||||
Lepidic pattern-predominant | Acinar pattern-predominant | Micropapillary-predominant | Solid-predominant | Adeno-squamous | Sarcomatoid | |
7 | 6 | 2 | 1 | 2 | 1 | |
PD-L1 expression | Total 27 cases, positive in 22 cases (82%) | |||||
0% | 1–49%: | >50% | ||||
5 cases (18%) | 11 cases (41%) | 11 cases (41%) | ||||
Stage 1–3 | Stage 4 | |||||
PD-L1 < 50% | PD-L1 > 50% | PD-L1 < 50% | PD-L1 > 50% | |||
12 cases (67%) | 6 cases (33%) | 2 cases (33%) | 4 cases (67%) |
Case # | Result | AF | Significance | Type of MET Mutation | Exon14 Skipping | Other Mutations | Surgical Pathology Diagnosis on Resection |
---|---|---|---|---|---|---|---|
1 | c.3028+2T>A | 41 | significant | splice | yes | Adenocarcinoma, lepidic predominant, with additional acinar component | |
2 | c.3280C>T (p.His1094Tyr) | 11 | significant | missense | no | KRAS | |
3 | c.3028+2del | 11 | significant | splice | yes | Adenocarcinoma, acinar predominant (70%) with lepidic pattern (30%). | |
4 | c.3028G>C (p.Asp1010His) | 3 | significant | splice | yes | ||
5 | c.3023_3028+7delinsTC | 91 | significant | splice | yes | ||
6 | c.3028+3A>G (p.?) | 25 | significant | splice | yes | ||
7 | c.3028+1delG | 71 | significant | splice | yes | ||
8 | c.3028G>C(p.Asp1010His) | 76 | significant | missense/splice | yes | ||
9 | c.3028G>T (p.Asp1010Tyr) | 71 | significant | missense/splice | yes | ||
10 | c.3028+1_3028+2delinsTC | 30 | significant | splice | yes | Sarcomatoid carcinoma, pleomorphic type with spindle cell and adenocarcinoma components | |
11 | c.3025_3028+3delGAAGGTA (p.?) | 66 | significant | splice | yes | Adenocarcinoma, lepidic predominant | |
12 | c.3320G>C(p.Cys1107Ser) | 52 | VUS | missense | no | ||
13 | c.3028+3_3028+9delinsTTTTTTT (p.?) | 34 | VUS | splice? | no | EGFR | Adenosquamous carcinoma |
14 | c.3082+1delG (p.?) | 44 | significant | splice | yes | Adenocarcinoma, acinar predominant | |
15 | c.3028+1G>C (p.?) | 30 | significant | splice | yes | Adenocarcinoma, micropapillary predominant (60%), with additional acinar (20%), solid (10%) and lepidic (10%) components | |
16 | c.3747G>T, (p.Trp1249Cys) | 21 | VUS | missense | no | ||
17 | c.3017_3028delCTTTTCCAGAAG (p.Thr1006_Asp1010delinsAsn) | 29 | significant | splice | yes | ||
18 | c.3028+1G>C (splice) | 20 | significant | splice | yes | ||
19 | c.3301G>A(p.Asp1101Asn) | 4 | VUS | missense | no | ||
20 | c.3028+3A>T | 24 | VUS | splice? | no | Adenocarcinoma, lepidic predominant | |
21 | c.3002_3027delTAGACTACCGAGCTACTTTTCCAGAA (p.Val1001Glyfs*5) | 7 | VUS | splice? | no | Adenocarcinoma (micropapillary 60%, acinar 40%, papillary 10%) | |
22 | c.3028G>C(p.Asp1010His) | 92 | significant | missense/splice | yes | ||
23 | c.3017_3028del (p.Thr1006_Asp1010delinsAsn) | 14 | VUS | splice? | no | Primary lung adenosquamous carcinoma | |
24 | c.3752C>T (p.Ala1251Val) | 5 | VUS | missense | no | KRAS | |
25 | c.3028 + 3A>G | 23 | VUS | splice? | no | Adenocarcinoma, acinar predominant (80%) with lepidic (20%) pattern | |
26 | c.3028G>T(p.Asp1010Tyr) | 23 | significant | missense/splice | yes | Adenocarcinoma, acinar-predominant | |
27 | c.3028+1G>A (p.?) | 3 | significant | splice | yes | ||
28 | c.3017_3028+2del | 40 | significant | splice | yes | ||
29 | c.3028+2T>C (p.?) | 11 | significant | splice | yes | Adenocarcinoma, solid predominant (80%) with additional acinar pattern (20%) pattern. | |
30 | c.3028G>A (p.Asp1010Asn) | 15 | significant | missense/splice | yes | ||
31 | c.3028G>C (p.Asp1010His) | 77 | significant | missense/splice | yes | ||
32 | c.3028+1G>C | 73 | significant | splice | yes | Adenocarcinoma, acinar predominant (60%), with additional solid (30%) and micropapillary (10%) patterns. | |
33 | c.3028+2T>C | 54 | significant | splice | yes | ||
34 | c.3028+1G>T | 25 | significant | splice | yes | Adenocarcinoma with predominant acinar pattern | |
35 | c.3028+2T>C (p.?) | 31 | significant | splice | yes | Adenocarcinoma, lepidic predominant (55%) with acinar pattern (45%). | |
36 | c.3028G>C (p.Asp1010His) | 52 | significant | missense/splice | yes | Adenocarcinoma, lepidic-predominant (70%) with acinar (20%) and solid (10%) patterns. | |
37 | c.3028+1G>A | 35 | significant | splice | yes | ||
38 | c.3028G>C (p.Asp1010His) | 3 | significant | missense/splice | yes | Adenocarcinoma, lepidic predominant (80%), with additional acinar pattern (20%). | |
39 | c.3027_3028+6delAAGGTATAT | 3 | significant | splice | yes | ||
40 | c.3281A>G (p.His1094Arg) and c.3340+1G>A (intron 16) | 4 | significant and VUS | missense | no and no | KRAS | |
41 | c.3007T>C(p.Tyr1003His) | 6 | significant | missense | no | ||
42 | c.3028G>T(p.Asp1010Tyr) | 73 | significant | missense/splice | yes | ||
43 | c.3028G>C | 40 | significant | splice | yes | Adenocarcinoma, lepidic predominant (60%), with additional acinar pattern (40%). | |
44 | c.3028+2T>C | 20 | significant | splice | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Mehrotra, H.; He, X.; Bosler, D. MET Exon 14 Variants in Non-Small Cell Lung Carcinoma: Prevalence, Clinicopathologic and Molecular Features. J. Mol. Pathol. 2023, 4, 46-56. https://doi.org/10.3390/jmp4010006
Yuan L, Mehrotra H, He X, Bosler D. MET Exon 14 Variants in Non-Small Cell Lung Carcinoma: Prevalence, Clinicopathologic and Molecular Features. Journal of Molecular Pathology. 2023; 4(1):46-56. https://doi.org/10.3390/jmp4010006
Chicago/Turabian StyleYuan, Lisi, Harshita Mehrotra, Xin He, and David Bosler. 2023. "MET Exon 14 Variants in Non-Small Cell Lung Carcinoma: Prevalence, Clinicopathologic and Molecular Features" Journal of Molecular Pathology 4, no. 1: 46-56. https://doi.org/10.3390/jmp4010006
APA StyleYuan, L., Mehrotra, H., He, X., & Bosler, D. (2023). MET Exon 14 Variants in Non-Small Cell Lung Carcinoma: Prevalence, Clinicopathologic and Molecular Features. Journal of Molecular Pathology, 4(1), 46-56. https://doi.org/10.3390/jmp4010006