Hydrothermal Alteration Features Enhancement and Mapping Using High-Resolution Hyperspectral Data †
Abstract
:1. Introduction
2. Material and Methods
2.1. Geological Setting and Alterations
2.2. HyMap Data and Remote Sensing Techniques
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, R.N.; Gallagher, A.J.; Swayze, G.A. Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra. In Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, Pasadena, CA, USA, 4–5 June 1990; pp. 176–186. [Google Scholar]
- Hecker, C.; van Ruitenbeek, F.J.; van der Werff, H.M.; Bakker, W.H.; Hewson, R.D.; van der Meer, F.D. Spectral absorption feature analysis for finding ore: A tutorial on using the method in geological remote sensing. IEEE Geosci. Remote Sens. Mag. 2019, 7, 51–71. [Google Scholar] [CrossRef]
- Cardoso-Fernandes, J.; Santos, D.; Lima, A.; Teodoro, A.C. Assessing the PRISMA Potential for Mineral Exploration to Vector Low-Grade Lithium Deposits. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 5985–5988. [Google Scholar]
- Pour, A.B.; Guha, A.; Crispini, L.; Chatterjee, S. Editorial for the Special Issue Entitled Hyperspectral Remote Sensing from Spaceborne and Low-Altitude Aerial/Drone-Based Platforms—Differences in Approaches, Data Processing Methods, and Applications; MDPI: Basel, Switzerland, 2023; Volume 15, p. 5119. [Google Scholar]
- Yao, F.; Liu, S.; Wang, D.; Geng, X.; Wang, C.; Wang, Y. Review on the development of multi-and hyperspectral Remote sensing technology for exploration of copper-gold deposits. Ore Geol. Rev. 2023, 162, 105732. [Google Scholar] [CrossRef]
- Choubert, G. Histoire Géologique du Précambrien de l’Anti-Atlas; Éditions du Service géologique du Maroc: Rabat, Morocco, 1964. [Google Scholar]
- Hassenforder, B. Evolution tectono-métamorphique du socle du Kerdous (Anti-Atlas occidental, Maroc) dans le cadre des orogenèses éburnéenne et pan-africaine. Sci. Géologiques Bull. Et Mémoires 1978, 31, 21–31. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Himyari, S.M.; Hamzaoui, A.; Bensalah, M.K.; Benaouiss, N.; Hashim, M. HyMap imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, Morocco). J. Spat. Sci. 2023, 69, 1–22. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Mnissar Himyari, S.; Hamzaoui, A.; Hashim, M. Evaluating the Performance of Machine Learning and Deep Learning Techniques to HyMap Imagery for Lithological Mapping in a Semi-Arid Region: Case Study from Western Anti-Atlas, Morocco. Minerals 2023, 13, 766. [Google Scholar] [CrossRef]
- Cocks, T.; Jenssen, R.; Stewart, A.; Wilson, I.; Shields, T. The HyMapTM airborne hyperspectral sensor: The system, calibration and performance. In Proceedings of the 1st EARSeL Workshop on Imaging Spectroscopy, Zurich, Switzerland, 6–8 October 1998; pp. 37–42. [Google Scholar]
- Hausknecht, P. Hymap Data L2/3 Processing. J. Rep. Geol. Surv. Namib. 2005, 1, 48. [Google Scholar]
- Crowley, J.K.; Brickey, D.W.; Rowan, L.C. Airborne imaging spectrometer data of the Ruby Mountains, Montana: Mineral discrimination using relative absorption band-depth images. Remote Sens. Environ. 1989, 29, 121–134. [Google Scholar] [CrossRef]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Beiranvand Pour, A.; Park, T.-Y.S.; Park, Y.; Hong, J.K.; M Muslim, A.; Läufer, A.; Crispini, L.; Pradhan, B.; Zoheir, B.; Rahmani, O. Landsat-8, advanced spaceborne thermal emission and reflection radiometer, and WorldView-3 multispectral satellite imagery for prospecting copper-gold mineralization in the northeastern Inglefield Mobile Belt (IMB), northwest Greenland. Remote Sens. 2019, 11, 2430. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Himyari, S.M.; Hamzaoui, A.; Bensalah, M.K.; Benaouis, N.; Hashim, M. HyMap Airborne Imaging Spectroscopy for Mineral Potential Mapping of Cupriferous Mineralization in a Semi-Arid Region Based on Pixel/Sub-Pixel Hydrothermal Alteration Minerals Mapping–A Case Study. In Proceedings of the 25th EGU General Assembly, Vienna, Austria, 3–28 April 2023. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectral signatures of particulate minerals in the visible and near infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Bakker, W.; van Ruitenbeek, F.; van der Werff, H. Hyperspectral image mapping by automatic color coding of absorption features. In Proceedings of the 7th EARSEL Workshop of the Special Interest Group in Imaging Spectroscopy, Edinburgh, UK, 11–13 April 2011. [Google Scholar]
- Portela, B.; Sepp, M.D.; van Ruitenbeek, F.J.; Hecker, C.; Dilles, J.H. Using hyperspectral imagery for identification of pyrophyllite-muscovite intergrowths and alunite in the shallow epithermal environment of the Yerington porphyry copper district. Ore Geol. Rev. 2021, 131, 104012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajaj, S.; El Harti, A.; Jellouli, A.; Mnissar Himyari, S.; Hamzaoui, A. Hydrothermal Alteration Features Enhancement and Mapping Using High-Resolution Hyperspectral Data. Environ. Sci. Proc. 2024, 29, 77. https://doi.org/10.3390/ECRS2023-16888
Hajaj S, El Harti A, Jellouli A, Mnissar Himyari S, Hamzaoui A. Hydrothermal Alteration Features Enhancement and Mapping Using High-Resolution Hyperspectral Data. Environmental Sciences Proceedings. 2024; 29(1):77. https://doi.org/10.3390/ECRS2023-16888
Chicago/Turabian StyleHajaj, Soufiane, Abderrazak El Harti, Amine Jellouli, Saloua Mnissar Himyari, and Abderrazak Hamzaoui. 2024. "Hydrothermal Alteration Features Enhancement and Mapping Using High-Resolution Hyperspectral Data" Environmental Sciences Proceedings 29, no. 1: 77. https://doi.org/10.3390/ECRS2023-16888
APA StyleHajaj, S., El Harti, A., Jellouli, A., Mnissar Himyari, S., & Hamzaoui, A. (2024). Hydrothermal Alteration Features Enhancement and Mapping Using High-Resolution Hyperspectral Data. Environmental Sciences Proceedings, 29(1), 77. https://doi.org/10.3390/ECRS2023-16888