A First Approximation for Acid Sulfate Soil Mapping in Areas with Few Soil Samples †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Datasets
2.3. Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Michael, P.S. Ecological Impacts and Management of Acid Sulphate Soil: A Review. Asian J. Water Environ. Pollut. 2013, 10, 13–24. [Google Scholar]
- McBradney, A.B.; Mendonça Santos, M.L.; Minasmy, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Brus, D.J.; Kempen, B.; Heuvelink, G.B.M. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011, 62, 394–404. [Google Scholar] [CrossRef]
- Estévez, V.; Beucher, A.; Mattbäck, S.; Boman, A.; Auri, J.; Björk, K.-M.; Osterhölm, P. Machine learning techniques for acid sulfate soil mapping in southeastern Finland. Geoderma 2022, 406, 115446. [Google Scholar] [CrossRef]
- Estévez, V.; Mattbäck, S.; Boman, A.; Beucher, A.; Björk, K.-M.; Osterhölm, P. Improving prediction accuracy for acid sulfate soil mapping by means of variable selection. Front. Environ. Sci. 2023, 11, 1213069. [Google Scholar] [CrossRef]
- Estévez, V.; Mattbäck, S.; Björk, K.-M. Importance of the activation function in extreme learning machine for acid sulfate soil classification. In Proceedings of the ELM 2022, Helsinki, Finland, 8–9 December 2022. [Google Scholar]
- Beucher, A.; Österholm, P.; Martinkauppi, A.; Edén, P.; Fröjdö, S. Artificial neural network for acid sulfate soil mapping: Application to the Sirppujoki River cathment area, south-western Finland. J. Geochem. Explor. 2013, 125, 46–55. [Google Scholar] [CrossRef]
- Beucher, A.; Fröjdö, S.; Österholm, P.; Martinkauppi, A.; Edén, P. Fuzzy logic for acid sulfate soil mapping: Application to the southern part of the finnish coastal areas. Geoderma 2014, 226–227, 21–30. [Google Scholar] [CrossRef]
- Huang, J.; Nhan, T.; Wong, V.N.L.; Nohaton, S.G.; Lark, R.M.; Triantafilis, J. Digital Soil Mapping of a Coastal Acid Sulfate Soil Landscape. Soil Res. 2014, 52, 327–339. [Google Scholar] [CrossRef]
- Boman, A.; Mattbäck, S.; Becher, M.; Sohlenius, G.; Auri, J.; Öhrling, C.; Liwata-Kenttälä, P.; Edén, P. Classification of Acid Sulfate Soils and Materials in Finland and Sweden: Re-Introduction of Pseudoacid Sulfate Soil Materials. In Abstract Book, Proceedings of the 9th International Acid Sulfate Soils Conference, Adelaide, Australia, 26–31 March 2023; University of Adelaide: Adelaide, Australia, 2023; Available online: https://set.adelaide.edu.au/acid-sulfate-soils-centre/ua/media/50/9th-iassc-abstract-book.pdf (accessed on 31 January 2023).
- Estévez, V. Machine Learning Methods for Classification of Acid Sulfate Soils in Virolahti. Master’s Thesis, Arcada University of Applied Sciences, Helsinki, Finland, June 2020. [Google Scholar]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Powers, D.M.W. Evaluation: From precision, recall, and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar]
Trained with the Soil Samples from: | Class | Precision | Recall | F1-Score |
---|---|---|---|---|
Virolahti | non-AS | 0.64 | 0.62 | 0.63 |
AS | 0.63 | 0.65 | 0.64 | |
Hel-Lov | non-AS | 0.77 | 0.72 | 0.74 |
AS | 0.73 | 0.78 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estévez, V.; Mattbäck, S.; Boman, A. A First Approximation for Acid Sulfate Soil Mapping in Areas with Few Soil Samples. Environ. Sci. Proc. 2024, 29, 4. https://doi.org/10.3390/ECRS2023-15831
Estévez V, Mattbäck S, Boman A. A First Approximation for Acid Sulfate Soil Mapping in Areas with Few Soil Samples. Environmental Sciences Proceedings. 2024; 29(1):4. https://doi.org/10.3390/ECRS2023-15831
Chicago/Turabian StyleEstévez, Virginia, Stefan Mattbäck, and Anton Boman. 2024. "A First Approximation for Acid Sulfate Soil Mapping in Areas with Few Soil Samples" Environmental Sciences Proceedings 29, no. 1: 4. https://doi.org/10.3390/ECRS2023-15831
APA StyleEstévez, V., Mattbäck, S., & Boman, A. (2024). A First Approximation for Acid Sulfate Soil Mapping in Areas with Few Soil Samples. Environmental Sciences Proceedings, 29(1), 4. https://doi.org/10.3390/ECRS2023-15831