Fast Computations of the Top-of-the-Atmosphere Radiance in a Spectral Range 400–2500 nm Using the PYDOME Tool †
Abstract
:1. Introduction
2. Methodology
2.1. Radiative Transfer Model PYDOME
2.2. Formulation of the Modified k-Distribution Method
3. Results of Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ambartzumyan, V. The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars. Publ. Obs. Astron. Univ. Leningrad 1936, 6, 7–18. [Google Scholar]
- Goody, R.; West, R.; Chen, L.; Crisp, D. The correlated k-method for radiation calculations in nonhomogeneous atmosphere. J. Quant. Spectrosc. Radiat. Transfer 1989, 42, 539–550. [Google Scholar] [CrossRef]
- Fomin, B. A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave. J. Geophys. Res. 2005, 110, D02106. [Google Scholar] [CrossRef]
- Molina García, V.; Sasi, S.; Efremenko, D.; Doicu, A.; Loyola, D. Radiative transfer models for retrieval of cloud parameters from EPIC/DSCOVR measurements. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 228–240. [Google Scholar] [CrossRef]
- Fu, Q.; Liou, K.N. On the Correlatedk-Distribution Method for Radiative Transfer in Nonhomogeneous Atmospheres. J. Atmos. Sci. 1992, 49, 2139–2156. [Google Scholar] [CrossRef]
- Efremenko, D.S.; Molina García, V.; Gimeno García, S.; Doicu, A. A review of the matrix-exponential formalism in radiative transfer. J. Quant. Spectrosc. Radiat. Transf. 2017, 196, 17–45. [Google Scholar] [CrossRef]
- Efremenko, D.; Doicu, A.; Loyola, D.; Trautmann, T. Acceleration techniques for the discrete ordinate method. J. Quant. Spectrosc. Radiat. Transf. 2013, 114, 73–81. [Google Scholar] [CrossRef]
- Efremenko, D.S. Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof of Concept. Light Eng. 2021, 1, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh Optical Depth Calculations. J. Atmos. Ocean. Technol. 1999, 16, 1854–1861. [Google Scholar] [CrossRef]
- Schreier, F.; García, S.G.; Hochstaffl, P.; Städt, S. Py4CAtS—PYthon for Computational ATmospheric Spectroscopy. Atmosphere 2019, 10, 262. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hill, C.; Kochanov, R.; Tan, Y.; Bernath, P.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- del Águila, A.; Efremenko, D.S. Accuracy Enhancement of the Two-Stream Radiative Transfer Model for Computing Absorption Bands at the Presence of Aerosols. Light Eng. 2021, 29, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Natraj, V.; Shia, R.L.; Yung, Y.L. On the use of principal component analysis to speed up radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 810–816. [Google Scholar] [CrossRef]
- del Águila, A.; Efremenko, D.S.; Trautmann, T. A Review of Dimensionality Reduction Techniques for Processing Hyper-Spectral Optical Signal. Light Eng. 2019, 27, 85–98. [Google Scholar] [CrossRef] [PubMed]
Scenario | Sampling Rate | Grid Step in 400–1000 nm (nm) | Grid Step in 1000–2500 nm (nm) | Mean/Max Error (%) in 350–1000 nm | Mean/Max Error (%) in 1000–2500 nm |
---|---|---|---|---|---|
clear sky | 16 | 0.182 | 0.48 | 0.024/1.848 | 0.05/49.031 |
128 | 1.459 | 3.84 | 0.055/3.037 | 0.033/49.031 | |
2048 | 23.347 | 61.44 | 0.64/2.958 | 0.046/49.03 | |
4096 | 46.694 | 122.88 | 1.445/14.288 | 0.052/49.036 | |
aerosol (AOT = 2) | 16 | 0.182 | 0.48 | 0.058/2.202 | 0.21/49.9 |
128 | 1.459 | 3.84 | 0.159/1.54 | 0.192/50.0 | |
2048 | 23.347 | 61.44 | 0.405 /2.669 | 0.48/51.88 | |
4096 | 46.694 | 122.88 | 0.634/4.347 | 0.62/50.3 | |
cloud | 16 | 0.182 | 0.48 | 0.318/21.989 | 0.378/50.25 |
128 | 1.459 | 3.84 | 0.796/16.459 | 0.97/49.924 | |
2048 | 23.347 | 61.44 | 2.622/45.903 | 1.37/51.526 | |
4096 | 46.694 | 122.88 | 4.608/43.588 | 4.48/51.20 |
S2 Band | AOT 0.3 | AOT = 0.85 | ||
---|---|---|---|---|
SZA = 60, | SZA = 60, | SZA = 0, | SZA = 0, | |
VZA = 20 | VZA = 50 | VZA = 65 | VZA = 0 | |
1 | −0.02/<0.01 | −0.02/<0.01 | 0.01/<0.01 | <0.01/<0.01 |
2 | −0.05/<0.01 | −0.06/<0.01 | −0.0/<0.01 | <0.01/<0.01 |
3 | −0.11/<0.01 | −0.11/<0.01 | −0.05/<0.01 | 0.03/<0.01 |
4 | −0.72/<0.01 | −0.74/<0.01 | 0.44/<0.01 | 0.29/<0.01 |
5 | 1.59/<0.01 | 1.61/0.01 | 3.07/0.01 | 2.42/0.01 |
6 | 0.28/<0.01 | 0.29/<0.01 | 3.97/<0.01 | 2.93/<0.01 |
7 | 1.31/<0.01 | 1.36/<0.01 | −0.31/<0.01 | 0.25/<0.01 |
8 | 1.81/0.02 | 1.87/0.026 | 0.95/0.02 | 0.66/0.02 |
8A | −0.11/<0.01 | −0.12/<0.01 | −0.16/<0.01 | 0.11/<0.01 |
9 | 17.38/0.21 | 17.57/0.36 | 15.27/0.37 | 13.84/0.33 |
10 | 5.81/0.02 | 5.57/0.38 | 5.81/0.02 | 5.57/0.01 |
11 | 0.6/<0.01 | 0.7/<0.01 | 0.6/<0.01 | 0.7/<0.01 |
12 | −2.55/0.011 | −2.73/0.019 | −2.55/0.015 | −2.73/<0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efremenko, D.; Pflug, B.; Richter, R.; de los Reyes, R.; Trautmann, T. Fast Computations of the Top-of-the-Atmosphere Radiance in a Spectral Range 400–2500 nm Using the PYDOME Tool. Environ. Sci. Proc. 2024, 29, 20. https://doi.org/10.3390/ECRS2023-15858
Efremenko D, Pflug B, Richter R, de los Reyes R, Trautmann T. Fast Computations of the Top-of-the-Atmosphere Radiance in a Spectral Range 400–2500 nm Using the PYDOME Tool. Environmental Sciences Proceedings. 2024; 29(1):20. https://doi.org/10.3390/ECRS2023-15858
Chicago/Turabian StyleEfremenko, Dmitry, Bringfried Pflug, Rudolf Richter, Raquel de los Reyes, and Thomas Trautmann. 2024. "Fast Computations of the Top-of-the-Atmosphere Radiance in a Spectral Range 400–2500 nm Using the PYDOME Tool" Environmental Sciences Proceedings 29, no. 1: 20. https://doi.org/10.3390/ECRS2023-15858
APA StyleEfremenko, D., Pflug, B., Richter, R., de los Reyes, R., & Trautmann, T. (2024). Fast Computations of the Top-of-the-Atmosphere Radiance in a Spectral Range 400–2500 nm Using the PYDOME Tool. Environmental Sciences Proceedings, 29(1), 20. https://doi.org/10.3390/ECRS2023-15858