Open SolWat System with Cooling of the Secondary Wastewater Effluent from a WWTP on the Front Surface of the Photovoltaic Module for efficient Energy Generation and Reclaimed Water Production †
Abstract
:1. Introduction
2. Materials and Methods
Experimental Set-Up
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubey, S.; Sarvaiya, J.N.; Seshadri, B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia 2013, 33, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Yildirim, M.A.; Noeak-Oclón, M. Modified Maximum Power Point Tracking Algorithm under Time-Varying Solar Irradiation. Energies 2020, 13, 6722. [Google Scholar] [CrossRef]
- Mekhilef, S.; Saidur, R.; Kamalisarvestani, M. Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renew. Sustain. Energy Rev. 2012, 16, 2920–2925. [Google Scholar] [CrossRef]
- Sato, D.; Yamada, N. Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method. Renew. Sustain. Energy Rev. 2019, 104, 151–166. [Google Scholar] [CrossRef]
- Dwivedi, P.; Sudhakar, K.; Soni, A.; Solomin, E. Case Studies in Thermal Engineering Advanced cooling techniques of PV modules: A state of art. Case Stud. Therm. Eng. 2020, 21, 100674. [Google Scholar] [CrossRef]
- Vivar, M.; Skryabin, I.; Everett, V.; Blakers, A. A concept for a hybrid solar water purification and photovoltaic system. Sol. Energy Mater. Sol. Cells 2010, 94, 1772–1782. [Google Scholar] [CrossRef]
- Vivar, M.; Fuentes, M.; Torres, J.; Rodrigo, M.J. Solar disinfection as a direct tertiary treatment of a wastewater plant using a photochemical-photovoltaic hybrid system. J. Water Process Eng. 2021, 42, 102196. [Google Scholar] [CrossRef]
- Torres, J.; Vivar, M.; Fuentes, M.; Palacios, A.M.; Rodrigo, M.J. Performance of the SolWat system operating in static mode vs. dynamic for wastewater treatment: Power generation and obtaining reclaimed water. J. Environ. Manage. 2022, 324, 116373. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, J.; Hoinkis, J. Renewable Energy Applications for Freshwater Production; CRC Press and IWA Publishing: London, UK, 2012; Volume 2. [Google Scholar]
- Mahian, O.; Wei, J.; Taylor, R.A.; Wongwises, S. Solar-Driven Water Treatment. Re-Engineering and Accelerating Nature’S Water Cycle, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- McGuigan, K.G.; Conroy, R.M.; Mosler, H.J.; du Preez, M.; Ubomba-Jaswa, E.; Fernandez-Ibañez, P. Solar water disinfection (SODIS): A review from bench-top to roof-top. J. Hazard. Mater. 2012, 235–236, 29–46. [Google Scholar] [CrossRef] [PubMed]
- Guía para la Aplicación del, R.D. 1620/2007 por el que se establece el Régimen Jurídico de la Reutilización de las Aguas Depuradas. C.D.E. Publicaciones. 2007. Available online: https://www.miteco.gob.es/es/agua/publicaciones/GUIA%20RD%201620_2007__tcm30-213764.pdf (accessed on 10 March 2023).
- The European Parliament and the Council. «Regulation (EU) 2020/741, Minimum requirements for water reuse». Off. J. Eur. Union 2020, 177/33, 32–55. Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 10 March 2023).
Date/ Parameter | Water Sample | Initial Volume (L) | Final Volume (L) | Evaporation Volume and Leaks (%) | Solar Global Irradiance (W/m2) | UV Irradiance (W/m2) | UV Radiation dose | T Water (°C) | T Ambient (°C) | Wind Speed (m/s) | Relative Humidity (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Max. | Avg. | Max. | Avg. | (Wh/m2) | (kJ/m2) | Max. | Avg. | Max. | Avg. | Max. | Avg. | Max. | Avg. | |||||
9 May 2022 | Wastewater | 4.2 | 2.4 | 43.8 | 1036 | 944 | 50.3 | 45.3 | 89.81 | 323.30 | 32.7 | 29.7 | 32.9 | 29.4 | 9.4 | 4.2 | 38.5 | 27.5 |
10 May 2022 | 6.2 | 3.8 | 38.7 | 1036 | 930 | 50.4 | 44.8 | 89.95 | 323.81 | 38.5 | 35.7 | 32.4 | 29.2 | 11.0 | 5.0 | 36.9 | 27.7 | |
3 June 2022 | Milli-Q | 4.2 | 2.3 | 45.2 | 1021 | 939 | 51.3 | 47.0 | 94.41 | 339.87 | 27.1 | 25.0 | 28.5 | 25.8 | 10.9 | 5.7 | 58.3 | 43.7 |
7 June 2022 | 6.2 | 3.7 | 40.3 | 1007 | 930 | 50.0 | 46.1 | 92.67 | 333.61 | 32.7 | 30.3 | 37.3 | 34.3 | 10.3 | 4.6 | 18.7 | 14.6 | |
7 July 2022 | Wastewater | 4.2 | 2.0 | 52.4 | 1106 | 907 | 50.2 | 44.1 | 88.49 | 318.56 | 36.9 | 33.4 | 40.7 | 36.4 | 8.9 | 4.2 | 37.3 | 26.5 |
8 July 2022 | 6.2 | 3.9 | 37.1 | 1002 | 942 | 48.7 | 45.2 | 90.80 | 326.87 | 35.7 | 33.6 | 40.5 | 37.0 | 9.0 | 4.8 | 32.7 | 19.8 |
Use/Experiment | E. coli (CFU/100 mL) | TSS (mg/L) | Turbidity (NTU) | Other Criteria | Open SolWat (4 h) | |||||
---|---|---|---|---|---|---|---|---|---|---|
9 May 2022 | 10 May 2022 | 7 July 2022 | 8 July 2022 | |||||||
RD 1620/2007 | Urban | Quality 1.2: SERVICES (a), (b), (c), (d) Quality type: B | ≤200 | 20 | 10 | *** | ** Turbidity = 14.4 UNT | ** Turbidity = 27.17 NTU | ||
Agricultural | Quality 2.1: (a) Quality type: B | ≤100 | 20 | 10 | *** | ** Turbidity = 14.4 UNT, ** Cr > 0.1 mg/L | ** Cr > 0.1 mg/L | ** Turbidity= 27.17 NTU | ✔ | |
Quality 2.2: (a), (b), (c) Quality type: C | ≤1000 | 35 | * | *** | ** Cr > 0.1 mg/L | ** Cr > 0.1 mg/L | ✔ | ✔ | ||
Quality 2.3: (a), (b), (c) Quality type: D | ≤10,000 | 35 | * | ** Cr > 0.1 mg/L | ** Cr > 0.1 mg/L | ✔ | ✔ | |||
Industrial | Quality 3.1: (a), (b) Quality type: C | ≤10,000 | 35 | 15 | *** | ✔ | ✔ | ** Turbidity = 27.17 NTU | ✔ | |
Quality 3.1: (c) Quality type: C | ≤1000 | 35 | * | ✔ | ✔ | ✔ | ✔ | |||
Recreational | Quality 4.1: (a) Quality type: B | ≤200 | 20 | 10 | ** Turbidity = 14.4 UNT | ** Turbidity = 27.17 NTU | ||||
Quality 4.2: (a) Quality type: D | ≤10,000 | 35 | * | *** Ptotal: 2 mg P/L (in standing water) | ** Ptotal > 2 mg/L | ✔ | ** Ptotal > 2 mg/L | ** Ptotal > 2 mg/L | ||
Environmental | Quality 5.1: (a) Quality type: C | ≤1000 | 35 | * | Ntotal: 10 mg N/L, NO3−: 25 mg NO3/L. Art. 257 to 259 of RD 849/1986. | ✔ | ✔ | ✔ | ✔ | |
Quality 5.3: (a), (b) Quality type: E | * | 35 | * | *** | ✔ | ✔ | ✔ | ✔ | ||
Quality 5.4: (a) Quality type: F | The minimum quality required will be studied on a case by case basis. | ✔ | ✔ | ✔ | ✔ | |||||
R(EU)2020/741 | Agricultural | Quality type: B | ≤100 | In accordance with Directive 91/271/EEC. ≤35 mg/L | * | BOD5 (mg/L): In accordance with Directive 91/271/EEC, ≤25 mg/L O2 | ✔ | ✔ | ||
Quality type: C | ≤1000 | * | ✔ | ✔ | ✔ | |||||
Quality type: D | ≤10,000 | * | ✔ | ✔ | ✔ | ✔ |
Experiment/Date | 9 May 2022 | 10 May 2022 | 3 June 2022 | 7 June 2022 | 7 July 2022 | 8 July 2022 | ||
---|---|---|---|---|---|---|---|---|
Global irradiance (W/m2) | Max. | 1036 | 1036 | 1021 | 1007 | 1106 | 1002 | |
Avg. | 944 | 930 | 939 | 930 | 907 | 942 | ||
Ambient temperature (°C) | Max. | 32.88 | 32.44 | 28.54 | 34.33 | 40.68 | 40.54 | |
Avg. | 29.39 | 29.22 | 25.75 | 37.28 | 36.41 | 36.97 | ||
Generated energy (Wh) | Single PV module | 132.99 | 132.82 | 138.62 | 131.14 | 125.42 | 130.55 | |
Open SolWat | 157.75 | 156.60 | 160.17 | 155.76 | 151.25 | 157.12 | ||
SolWat energy losses vs. the single PV system (%) | Open SolWat Energy/Single PV Energy | −18.62 | −17.90 | −15.55 | −18.77 | −20.58 | −20.35 | |
PV module temperature (°C) | Single PV module | Max. | 68.9 | 67.9 | 53.8 | 71.8 | 73.8 | 70.8 |
Avg. | 61.3 | 59.8 | 46.2 | 64.7 | 63.3 | 66.1 | ||
Open SolWat | Max. | 39.4 | 38.5 | 30.0 | 38.1 | 43.0 | 41.0 | |
Avg. | 36.2 | 35.7 | 32.6 | 35.6 | 38.6 | 38.9 | ||
Temperature difference between the SolWat PV module and the Single PV module—(TSolWat − TSingle) (°C) Average | −25.1 | −24.1 | −16.2 | −30.6 | −27.1 | −28.2 | ||
ISC (A) | Single PV module | Max. | 2.604 | 2.605 | 2.528 | 2.529 | 2.781 | 2.504 |
Avg. | 2.350 | 2.325 | 2.315 | 2.327 | 2.246 | 2.358 | ||
Open SolWat | Max. | 2.650 | 2.649 | 2.586 | 2.570 | 2.884 | 2.586 | |
Avg. | 2.389 | 2.369 | 2.372 | 2.368 | 2.337 | 2.437 | ||
Equivalent to radiation losses (%) | ISC Open SolWat/ISC Single, Avg | −1.65 | −1.89 | −2.44 | −1.73 | −4.07 | −3.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres López, J.; Vivar García, M.; Fuentes Conde, M.; Palacios Villa, A.M. Open SolWat System with Cooling of the Secondary Wastewater Effluent from a WWTP on the Front Surface of the Photovoltaic Module for efficient Energy Generation and Reclaimed Water Production. Environ. Sci. Proc. 2023, 25, 81. https://doi.org/10.3390/ECWS-7-14321
Torres López J, Vivar García M, Fuentes Conde M, Palacios Villa AM. Open SolWat System with Cooling of the Secondary Wastewater Effluent from a WWTP on the Front Surface of the Photovoltaic Module for efficient Energy Generation and Reclaimed Water Production. Environmental Sciences Proceedings. 2023; 25(1):81. https://doi.org/10.3390/ECWS-7-14321
Chicago/Turabian StyleTorres López, Julia, Marta Vivar García, Manuel Fuentes Conde, and Ana María Palacios Villa. 2023. "Open SolWat System with Cooling of the Secondary Wastewater Effluent from a WWTP on the Front Surface of the Photovoltaic Module for efficient Energy Generation and Reclaimed Water Production" Environmental Sciences Proceedings 25, no. 1: 81. https://doi.org/10.3390/ECWS-7-14321
APA StyleTorres López, J., Vivar García, M., Fuentes Conde, M., & Palacios Villa, A. M. (2023). Open SolWat System with Cooling of the Secondary Wastewater Effluent from a WWTP on the Front Surface of the Photovoltaic Module for efficient Energy Generation and Reclaimed Water Production. Environmental Sciences Proceedings, 25(1), 81. https://doi.org/10.3390/ECWS-7-14321