Assessment of Flood Frequency Pattern in a Complex Mountainous Terrain Using the SWAT Model Simulation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model
2.3. Model Calibration and Validation
2.4. Flood Frequency Analysis
3. Results and Discussion
3.1. SWAT Model Performance
3.2. Flood Frequency Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zribi, M.; Nativel, S.; Le Page, M. Analysis of Agronomic Drought in a Highly Anthropogenic Context Based on Satellite Monitoring of Vegetation and Soil Moisture. Remote Sens. 2021, 13, 2698. [Google Scholar] [CrossRef]
- Moumen, Z.; Nabih, S.; Elhassnaoui, I.; Lahrach, A. Hydrologic Modeling Using SWAT: Test the Capacity of SWAT Model to Simulate the Hydrological Behavior of Watershed in Semi-Arid Climate. In Decision Support Methods for Assessing Flood Risk and Vulnerability; IGI Global: Hershey, PA, USA, 2020; pp. 162–198. [Google Scholar]
- El Alaoui El Fels, A.; Alaa, N.; Bachnou, A.; Rachidi, S. Flood Frequency Analysis and Generation of Flood Hazard Indicator Maps in a Semi-Arid Environment, Case of Ourika Watershed (Western High Atlas, Morocco). J. African Earth Sci. 2018, 141, 94–106. [Google Scholar] [CrossRef]
- Karmaoui, A.; Balica, S.F.; Messouli, M. Analysis of Applicability of Flood Vulnerability Index in Pre-Saharan Region, a Pilot Study to Assess Flood in Southern Morocco. Nat. Hazards Earth Syst. Sci. Discuss. 2016, 2, 1–24. [Google Scholar] [CrossRef]
- Riad, S.; Mania, J.; Bouchaou, L. Variabilité Hydroclimatique Dans Les Bassins-Versants Du Haut Atlas de Marrakech (Maroc). Sécheresse 2006, 17, 443–446. [Google Scholar] [CrossRef]
- Boudhar, A.; Hanich, L.; Boulet, G.; Duchemin, B.; Berjamy, B.; Chehbouni, A. Evaluation of the Snowmelt Runoff Model in the Moroccan High Atlas Mountains Using Two Snow-Cover Estimates. Hydrol. Sci. J. 2009, 54, 1094–1113. [Google Scholar] [CrossRef]
- Amaya, A.; Algouti, A.; Algouti, A. The Use of Remote Sensing and GIS to Identify Water Erosion Risks Areas in the Moroccan High Atlas. The Case Study of the N’Fis Wadi Watershed. Int. J. Sci. 2014, 2, 43–51. [Google Scholar]
- Gourfi, A.; Daoudi, L. Effects of Land Use Changes on Soil Erosion and Sedimentation of Dams in Semi-Arid Regions: Example of N’fis Watershed in Western High Atlas, Morocco. J. Earth Sci. Clim. Chang. 2019, 10, 513. [Google Scholar] [CrossRef]
- Markhi, A.; Laftouhi, N.; Grusson, Y.; Soulaimani, A. Assessment of Potential Soil Erosion and Sediment Yield in the Semi-Arid N′fis Basin (High Atlas, Morocco) Using the SWAT Model. Acta Geophys. 2019, 67, 263–272. [Google Scholar] [CrossRef]
- Zkhiri, W.; Tramblay, Y.; Hanich, L.; Berjamy, B. Regional Flood Frequency Analysis in the High Atlas Mountainous Catchments of Morocco. Nat. Hazards 2017, 86, 953–967. [Google Scholar] [CrossRef]
- Kidson, R.; Richards, K.S. Flood Frequency Analysis: Assumptions and Alternatives. Prog. Phys. Geogr. 2005, 29, 392–410. [Google Scholar] [CrossRef]
- Engeland, K.; Wilson, D.; Borsányi, P.; Roald, L.; Holmqvist, E. Use of Historical Data in Flood Frequency Analysis: A Case Study for Four Catchments in Norway. Hydrol. Res. 2018, 49, 466–486. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Aqnouy, M.; El Messari, J.E.S.; Ismail, H.; Bouadila, A.; Moreno Navarro, J.G.; Loubna, B.; Mansour, M.R.A. Assessment of the SWAT Model and the Parameters Affecting the Flow Simulation in the Watershed of Oued Laou (Northern Morocco). J. Ecol. Eng. 2019, 20, 104–113. [Google Scholar]
- Briak, H.; Moussadek, R.; Aboumaria, K.; Mrabet, R. Assessing Sediment Yield in Kalaya Gauged Watershed (Northern Morocco) Using GIS and SWAT Model. Int. Soil Water Conserv. Res. 2016, 4, 177–185. [Google Scholar] [CrossRef]
- Brouziyne, Y.; Abouabdillah, A.; Bouabid, R.; Benaabidate, L.; Oueslati, O. SWAT Manual Calibration and Parameters Sensitivity Analysis in a Semi-Arid Watershed in North-Western Morocco. Arab. J. Geosci. 2017, 10, 1–13. [Google Scholar] [CrossRef]
- Sirtou, M. Etude Hydro-Climatologique Des Bassins Du N’ Fis, Du Rheraya, de l’ Ourika et Du Zat (Maroc). Ph.D. Thesis, Université de Metz, Metz, France, 1995. [Google Scholar]
- Abourida, A.; Razoki, B.; Errouane, S.; Leduc, C.; Prost, J. Impact de l’irrigation Sur La Piezometrie Du Secteur N’fis Au Haouz Central de Marrakech (Maroc). Iahs Publ. 2003, 278, 389–395. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; William, J.R. Soil and Water Assessment Tool—Theoretical Documentation, Version 2005; Agricultural Research Service: Temple, TX, USA; Texas Agricultural Experiment Station: Temple, TX, USA, 2005; p. 476. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J. Soil and Water Assessment Tool Theoretical Documentation, Version 2009; Texas A&M University: College Station, TX, USA, 2009. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef]
- Mehan, S.; Neupane, R.P.; Kumar, S. Coupling of SUFI 2 and SWAT for Improving the Simulation of Streamflow in an Agricultural Watershed of South Dakota. Hydrol. Curr. Res. 2017, 8, 280. [Google Scholar] [CrossRef]
- Hui, J.; Wu, Y.; Zhao, F.; Lei, X.; Sun, P.; Singh, S.K.; Liao, W.; Qiu, L.; Li, J. Parameter Optimization for Uncertainty Reduction and Simulation Improvement of Hydrological Modeling. Remote Sens. 2020, 12, 4069. [Google Scholar] [CrossRef]
- Feyereisen, G.W.; Strickland, T.C.; Bosch, D.D.; Sullivan, D.G. Evaluation of SWAT Manual Calibration and Input Parameter Sensitivity in the Little River Watershed. Trans. ASABE 2007, 50, 843–855. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. V River Flow Forecasting Through Conceptual Models Part I-a Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe Jr, G.J. Evaluating the Use of “Goodness-of-fit” Measures in Hydrologic and Hydroclimatic Model Validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Farooq, M.; Shafique, M.; Khattak, M.S. Flood Frequency Analysis of River Swat Using Log Pearson Type 3, Generalized Extreme Value, Normal, and Gumbel Max Distribution Methods. Arab. J. Geosci. 2018, 11, 216. [Google Scholar] [CrossRef]
- Millington, N.; Das Samiram, S.S.P. An Integrated System Dynamics Model for Analyzing Behaviour of the Social-Energy-Economic-Climatic System: Model Description; Water Resources Research Report; The University of Western Ontario: London, ON, Canada, 2011; p. 233. [Google Scholar]
- Griffs, V.W.; Stedinger, J.R. Log-Pearson Type 3 Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12, 482–491. [Google Scholar] [CrossRef]
- Rao, A.R.; Hamed, K.H. World Meteorological Organization Statistical Distributions for Flood Frequency Analysis; World Meteorological Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Stehr, A.; Aguayo, M.; Link, O.; Parra, O.; Romero, F.; Alcayaga, H. Modelling the Hydrologic Response of a Mesoscale Andean Watershed to Changes in Land Use Patterns for Environmental Planning. Hydrol. Earth Syst. Sci. 2010, 14, 1963–1977. [Google Scholar] [CrossRef]
Data | Source | Spatial Resolution | Temporal Resolution |
---|---|---|---|
DEM | STRM-United States Geological Survey (USGS) https://earthexplorer.usgs.gov/ (accessed on 16 June 2020) | 30 m | - |
Land Use Map | (MODIS) Land Cover Type (MCD12Q1) | 500 m | Yearly |
Soil Map | Tensift Basin Hydraulic Agency (TBHA) | ArcInfo Format (scale 1:100,000) | - |
Soil Data | Field Work [9] | ArcInfo Format (scale 1:100,000) | - |
Observed Hydrometeorology | Tensift Basin Hydraulic Agency (TBHA) | - | Daily |
Name | Equation | Symbols |
---|---|---|
Log-Pearson III | α = shape parameter (α > 0) β = scale parameter (β ≠ 0) γ = location parameter Γ(β) = Gamma distribution function for the parameter β. | |
Gumbel (EV1) | μ = shape parameter (−∞ < α < ∞) σ = scale parameter (β > 0) | |
Generalized Extreme Value Distribution (GEV) | σ = scale parameter (σ > 0) k = shape parameter μ = location parameter |
Parameter | Imin Lhamam | Iguir Nkouris | Condition | ||
---|---|---|---|---|---|
Calibration | Validation | Calibration | Validation | ||
NSE | 0.51 | 0.56 | 0.54 | 0.62 | satisfactory > 0.5 |
PBIAS | 16.4 | 15.3 | 22.9 | 21.03 | satisfactory 25% |
RMSE | 4.00 | 3.25 | 3.72 | 3.12 |
T | Log-Pearson III | Gumbel | GEV |
---|---|---|---|
2 | 82.3 | 114.8 | 78.5 |
4 | 187.5 | 231.4 | 163.2 |
8 | 304.4 | 333.2 | 264.9 |
10 | 343.4 | 364.6 | 303.0 |
20 | 466.0 | 460.1 | 442.7 |
40 | 588.3 | 553.7 | 623.6 |
80 | 707.5 | 646.5 | 859.2 |
100 | 745.0 | 676.2 | 949.5 |
T | Log-Pearson III | Gumbel | GEV |
---|---|---|---|
Kolmogorov–Smirnov | 0.978 | 0.179 | 0.141 |
Anderson–Darling | −8.009 | 4.524 | 2.763 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joumar, N.; Markhi, A.; El Messari, J.E.S.; Benaabidate, L. Assessment of Flood Frequency Pattern in a Complex Mountainous Terrain Using the SWAT Model Simulation. Environ. Sci. Proc. 2023, 25, 102. https://doi.org/10.3390/ECWS-7-14195
Joumar N, Markhi A, El Messari JES, Benaabidate L. Assessment of Flood Frequency Pattern in a Complex Mountainous Terrain Using the SWAT Model Simulation. Environmental Sciences Proceedings. 2023; 25(1):102. https://doi.org/10.3390/ECWS-7-14195
Chicago/Turabian StyleJoumar, Nada, Amal Markhi, Jamal Eddine Stitou El Messari, and Lahcen Benaabidate. 2023. "Assessment of Flood Frequency Pattern in a Complex Mountainous Terrain Using the SWAT Model Simulation" Environmental Sciences Proceedings 25, no. 1: 102. https://doi.org/10.3390/ECWS-7-14195
APA StyleJoumar, N., Markhi, A., El Messari, J. E. S., & Benaabidate, L. (2023). Assessment of Flood Frequency Pattern in a Complex Mountainous Terrain Using the SWAT Model Simulation. Environmental Sciences Proceedings, 25(1), 102. https://doi.org/10.3390/ECWS-7-14195