Employing a Nondestructive Method for the Estimation of Foliar Area of Quina (Cinchona officinalis) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Study
2.2. Procedure
2.2.1. Leaf Area Estimation with the ImageJ Software
2.2.2. Estimation of Leaf Area in A4 Millimeter Sheets
2.2.3. Comparison of Both Measurement Methods
- n: total number of the sample;
- Ri: sum of the ranks of each sample;
- ni: number of observations for each sample;
- k: number of treatments or groups;
- S2: total variance of the sample.
2.3. Data Analysis
3. Results and Discussion
3.1. Leaf Area Estimation Model
3.2. Interpretability of the Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez, S.; Campanello, P.; Oliva, L.; Goldstein, G.; Bucci, S. Functional Ecology, a Forest Management Tool. 2019. Available online: http://sedici.unlp.edu.ar/bitstream/handle/10915/130933/Documento_completo.pdf?sequence=1 (accessed on 10 August 2022).
- Guangjian, Y.; Ronghai, H.; Jinghui, L.; Marie, W.; Hailan, J.; Xihan, M.; Donghui, X.; Wuming, Z. Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agric. For. Meteorol. 2019, 265, 390–411. [Google Scholar] [CrossRef]
- Macedo, R.; De Vasconcelos, T.; Dollabona, J.; Rangel, W.; De Oliveira, G. Measuring leaf area of Acerola. Rev. Caatinga 2011, 24, 40–45. [Google Scholar]
- Leite, M.; De Moura, G.; De Moura, E.; De Lucena, L.; Sales, A.; Sampaio, E. Comparação de métodos para estimar a área foliar em pornunça (Manihot sp.). Rev. Bras. Eng. Agrícola Ambient. 2021, 25, 733–740. [Google Scholar] [CrossRef]
- Valverde, J.; Arias, D. Evaluation of leaf area index with indirect and direct method in different environmental conditions in dendroenergetic plantations of Eucalyptus tereticornis Sm. Wood For. 2020, 26, e2621953. [Google Scholar] [CrossRef]
- Pandey, S.; y Singh, H. A simple, Cost-Effective Method for Leaf Area Estimation. J. Bot. 2011. [Google Scholar] [CrossRef] [Green Version]
- Casierra-Posada, F.; Zapata-Casierra, V.; Cutler, J. Comparison of direct and indirect methods for leaf area estimation in peach (Prunus persica) and plum (Prunus salicina) trees. Rev. Colomb. Cienc. Hortícolas 2017, 11, 30–38. [Google Scholar] [CrossRef]
- Tomaz, F.; De Souza, L.; Pivetta, F.; De Souza, J. Área do limbo foliar de diferentes plantas estimada por medidas lineares e máteria seca, calibrated as ImageJ software. Interscience 2015, 40, 570–575. Available online: https://www.redalyc.org/pdf/339/33940176011.pdf (accessed on 12 August 2022).
- Newton, T.; Moncon, G.; Minussi, J.; Abramo, J. ImageJ software as an alternative method for estimating leaf area in oats. Acta Agron. 2020, 69, 162–169. Available online: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/69401 (accessed on 8 August 2022). [CrossRef]
- Newton, T.; Abramo, J.; Fernandes, A.; Luiz, G.; Fogolari, H.; Dos Santos, V. Uso do software imageJ na estimativa de área foliar para a cultura do feijao. Interciencia 2013, 38, 843–848. [Google Scholar]
- Zárate, J.; Natália, M.; Nailson, J.; Lozano, F. Comparison of image analysis softwares for the determination of leaf area. Rev. Bras. Meio Ambiente 2018, 3, 24–32. [Google Scholar]
- Mollericona, M.; Laime, E.; Merma, E. Non-destructive estimation of the foliar area in cacao (Theobroma cacao L.) plantules from linear leaf measurements, Sapecho Experimental Station. Apthapi 2022, 8, 2310–2319. [Google Scholar]
- Cabezas-Gutiérrez, M.; Peña, F.; Duarte, H.; Colorado, J.; Lora, R. A model for non-destructive leaf area estimation in three forest species. Rev. UDCA Actual. Divulg. Cient. 2009, 12, 121–130. Available online: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-42262009000100013&lng=en&tlng=es (accessed on 10 May 2022).
- Chumbe, A.; Zárate, R.; Ruiz, L.; Mozombite, L.; Dávila, H. Leaf area of Caraipa utilis Vasquez in a varillal of the Allpahuayo Mishana National Reserve, Loreto, Peru. Cienc. Amaz. 2016, 6, 124–135. Available online: https://ojs.ucp.edu.pe/index.php/cienciaamazonica/article/view/116 (accessed on 6 August 2022). [CrossRef]
- INIA. Silvicultural study of Quina Cinchona officinalis L. 2018. Available online: https://repositorio.inia.gob.pe/handle/20.500.12955/889 (accessed on 15 March 2022).
- Yucta, M. Structure and Floristic Composition Associated with the Growth Habitat of Cinchona officinalis L. in the Province of Loja. Thesis Submitted for the Degree in Forestry Engineering, Universidad Nacional de Loja, Loja, Ecuador, 2016. [Google Scholar]
- Pino, D.; Taylor, C. Rubiaceae endemics of Peru. Rev. Peru. Biol. 2006, 13, 586–599. [Google Scholar] [CrossRef]
- Reynel, C.; Pennington, T.D. ; Pennington. R.T. Árboles del Perú; Imprenta Bellido: Lima, Peru, 2016; 1047p, ISBN 987-612-00-2232-0. [Google Scholar]
- Sauceda, C.; Gonzáles, V.; Sánchez, B.; Sauceda, R.; Ramírez, H.; Quintana, J. MACF-IJ, Automated method to measure color and leaf area using digital images. Agrociencia 2017, 51, 409–423. [Google Scholar]
- Jadoski, S.; Lopes, E.; Maggi, M.; Suchoronezek, A.; Saito, L.; Denega, S. Método de Determinação da Área Foliar da Cultivar de Batata Ágata a Partir de Dimensões Lineares. Universidade Estadual de Londrina, Brasil. 2012. Available online: https://www.redalyc.org/articulo.oa?id=445744117007 (accessed on 5 August 2022).
Variable | Method | Young Leaves | Mature Leaves | ||||||
---|---|---|---|---|---|---|---|---|---|
Average | Stand. Dev. | Min. | Max. | Media | Stand. Dev. | Min. | Max. | ||
Area | ImageJ | 80.72 | 52.82 | 7.62 | 257.21 | 255.28 | 98.73 | 100.3 | 590.55 |
Graph paper | 80.75 | 48.99 | 13 | 251.75 | 245.86 | 95.28 | 89.75 | 555 | |
Length | ImageJ | 11.72 | 3.72 | 4.23 | 20.91 | 21.66 | 3.73 | 14.76 | 30.3 |
Graph paper | 12.24 | 3.42 | 5 | 21 | 21.43 | 3.93 | 11.9 | 29 | |
Width | ImageJ | 8.59 | 3.03 | 2.64 | 17.58 | 16.17 | 3.52 | 8.89 | 25.98 |
Graph paper | 9.17 | 3.09 | 3.5 | 19 | 15.76 | 3.32 | 8 | 23 |
Expression of the Model | Coefficients of Determination | |
---|---|---|
R2 | Radj2 | |
AF = −122.469 + 7.371L + 13.37W | 0.9486 | 0.9476 |
Estimator | SD | t-Value | Significance | |
---|---|---|---|---|
Intercept | −122.469 | 7.260 | −16.869 | *** |
Length | 7.371 | 1.380 | 5.341 | *** |
Width | 13.370 | 1.734 | 7.710 | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sueldo, A.; Chumbimune, S.; Mendoza, E.; Salazar, W.; Minaya, B.; Arbizu, C.I. Employing a Nondestructive Method for the Estimation of Foliar Area of Quina (Cinchona officinalis). Environ. Sci. Proc. 2022, 22, 63. https://doi.org/10.3390/IECF2022-13051
Sueldo A, Chumbimune S, Mendoza E, Salazar W, Minaya B, Arbizu CI. Employing a Nondestructive Method for the Estimation of Foliar Area of Quina (Cinchona officinalis). Environmental Sciences Proceedings. 2022; 22(1):63. https://doi.org/10.3390/IECF2022-13051
Chicago/Turabian StyleSueldo, Andrea, Sheyla Chumbimune, Erik Mendoza, Wilian Salazar, Benjamin Minaya, and Carlos I. Arbizu. 2022. "Employing a Nondestructive Method for the Estimation of Foliar Area of Quina (Cinchona officinalis)" Environmental Sciences Proceedings 22, no. 1: 63. https://doi.org/10.3390/IECF2022-13051
APA StyleSueldo, A., Chumbimune, S., Mendoza, E., Salazar, W., Minaya, B., & Arbizu, C. I. (2022). Employing a Nondestructive Method for the Estimation of Foliar Area of Quina (Cinchona officinalis). Environmental Sciences Proceedings, 22(1), 63. https://doi.org/10.3390/IECF2022-13051