The Potential of Non-Vascular Epiphytes in Water Storage in the Montane Atlantic Forest †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Colombo, A.F.; Joly, C.A. Brazilian Atlantic Forest lato sensu: The most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 2010, 70, 697–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gradstein, R.S.; Holz, I. Cryptogamic epiphytes in primary and recovering upper montane oak forests of Costa Rica–species richness, community composition and ecology. Plant Ecol. 2005, 178, 89–109. [Google Scholar]
- Frego, K.A. Bryophytes as potential indicators of forest integrity. For. Ecol. Manag. 2007, 242, 65–75. [Google Scholar] [CrossRef]
- Salazar, L.C. Diversity of Epiphytic Bryophytes of the Colombian Amazon. Ph.D. Thesis, Universidad Nacional de Colombia, Colômbia, 2016. [Google Scholar]
- Lai, G.-Y.; Liu, H.-C.; Kuo, A.J.; Huang, C.-Y. Epiphytic bryophyte biomass estimation on tree trunks and upscaling in tropical montane cloud forests. PeerJ 2020, 8, e9351. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Bader, M.Y.; Zotz, G. Physiological ecology of tropical bryophytes. In Photosynthesis in Bryophytes and Early Land Plants; Hanson, D.T., Rice, S.K., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 269–289. [Google Scholar]
- Ah-Peng, C.; Cardoso, A.W.; Flores, O.; West, A.; Wilding, N.; Strasberg, D.; Hedderson, T.A. The role of epiphytic bryophytes in interception, storage, and the regulated release of atmospheric moisture in a tropical montane cloud forest. J. Hydrol. 2017, 548, 665–673. [Google Scholar] [CrossRef]
- Rosado, B.H.P.; Oliveira, R.S.; Aidar, M.P.M. Is leaf water repellency related to vapor pressure deficit and crown exposure in tropical forests? Acta Oecol. 2010, 36, 645–649. [Google Scholar] [CrossRef]
- Veloso, H.P.; Rangel-Filho, A.L.R.; Lima, J.C.A. Classificação da Vegetação Brasileira, Adaptada a um Sistema Universal; IBGE: Rio de Janeiro, Brazil, 1991. [Google Scholar]
- Salemi, L.F. Balanço de água e de Nitrogênio em uma Microbacia Coberta por Pastagem No Litoral Norte do Estado de São Paulo. Master’s Dissertation, University of São Paulo, Piracicaba, Brasil, 2009. [Google Scholar]
- Joly, C.A.; Assis, M.A.; Bernacci, L.C.; Tamashiro, J.Y.; De Campos, M.C.R.; Gomes, J.A.M.A.; Lacerda, M.S.; Dos Santos, F.A.M.; Pedroni, F.; Pereira, L.D.S.; et al. Florística e fitossociologia em parcelas permanentes da Mata Atlântica do sudeste do Brasil ao longo de um gradiente altitudinal. Biota Neotropica 2012, 12, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Gonzalez, G.; Lewis, S.L.; Burkitt, M.; Baker, T.R.; Phillips, O.L. ForestPlots.net Database. 2009. Available online: www.forestplots.net (accessed on 21 August 2022).
- Marchiori, N.M.; Rocha, H.R.; Tamashiro, J.Y.; Aidar, M.P.M. Tree community composition and aboveground biomass in a secondary atlantic forest, Serra do Mar State Park, São Paulo, Brazil. CERNE 2016, 22, 501–514. [Google Scholar] [CrossRef] [Green Version]
- Tansley, A.G.; Chipp, T.F. Aims and Methods in the Study of Vegetation; The British Empire Vegetation Committee: London, UK, 1926. [Google Scholar]
- Berro, G.B. Distribuição e Biomassa de epífitas Avasculares em Floresta Ombrófila Densa Montana de Mata Atlântica. Master’s dissertation, University of Campinas, Campinas, Brasil, 2021. [Google Scholar]
- Kersten, R.A.; Waechter, J.L. Métodos quantitativos no estudo de comunidades epifíticas. In Fitossociologia No Brasil: Métodos e Estudos de Caso; Felfili-Fagg, J.M., Eisenlohr, P.V., Melo, M.M.R.F., Andrade, L.A., Meira Neto, J.A.A., Eds.; Editora da Universidade Federal de Viçosa: Viçosa, Brasil, 2011; pp. 231–254. [Google Scholar]
- Gradstein, S.R.; Nadkarni, N.M.; Krömer, T.; Holz, I.; Nöske, N. A Protocol for rapid and representative sampling of vascular and non-vascular epiphyte diversity of tropical rain forests. Selbyana 2003, 24, 105–111. [Google Scholar]
- Vieira, S.; de Camargo, P.B.; Selhorst, D.; Da Silva, R.; Hutyra, L.; Chambers, J.Q.; Brown, I.F.; Higuchi, N.; dos Santos, J.; Wofsy, S.C.; et al. Forest structure and carbon dynamics in Amazonian tropical rain forests. Oecologia 2004, 140, 468–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chantanaorrapint, S.; Frahm, J.P. Biomass and selected ecological factors of epiphytic bryophyte along altitudinal gradients in Southern Thailand Songklanakarin. J. Sci. Technol. 2011, 33, 625–632. [Google Scholar]
- Pócs, T. The epiphytic biomass and its effect on the water balance of two rainforest types in the Uluguru Mountains (Tanzania, East Africa). Acta Bot. Acad. Scient. Hung. 1980, 26, 143–167. [Google Scholar]
- Veneklaas, E.J.; Zagt, R.J.; Van Leerdam, A.; Van Ek, R.; Broekhoven, A.J.; Van Genderen, M. Hydrological properties of the epiphyte mass of a montane tropical rain forest, Colombia. Vegetatio 1990, 89, 183–192. [Google Scholar] [CrossRef]
- Nadkarni, N.M. The nutritional effects of epiphytes on host trees with special reference to alteration of precipitation chemistry. Selbyana 1986, 9, 44–51. [Google Scholar]
- Holz, I.; Gradstein, S.R.; Heinrichs, J.; Kappelle, M. Bryophyte diversity, microhabitat differentiation, and distribution of life forms in Costa Rican upper montane Quercus forest. Bryologist 2002, 105, 334–348. [Google Scholar] [CrossRef]
Plot | Dry Biomass of Non-Vascular Epiphytes (kg/ha) | Water Stored in Non-Vascular Epiphytes (L/ha) |
---|---|---|
Old growth 1 | 203.24 | 913.46 |
Old growth 2 | 200.63 | 1154.98 |
Old growth 3 | 220.24 | 1330.75 |
Selective logging | 179.83 | 530.96 |
Late sucession | 185.97 | 703.84 |
Class of Diameter (cm) | Water Stored in Non-Vascular Epiphytes (L) |
---|---|
4.8 to 10 | 372.73 |
10 to 30 | 2191.16 |
30 to 50 | 1372.44 |
More than 50 | 696.15 |
Parameter | Estimate | p-Value |
---|---|---|
DBH | 0.00 | 0.78 |
Zone 2 | −0.03 | 0.01 |
Zone 3 | −0.05 | 0.00 |
Zone 4 | −0.08 | 0.00 |
Face N | 0.01 | 0.48 |
Face W | 0.00 | 0.67 |
Face S | −0.00 | 0.81 |
ICE-av 2 | 0.04 | 0.14 |
ICE-av 3 | 0.11 | 0.00 |
Selective logging | −0.00 | 0.91 |
Mature forest | 0.00 | 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berro, G.; Ramos, R.; Joly, C.; Vieira, S. The Potential of Non-Vascular Epiphytes in Water Storage in the Montane Atlantic Forest. Environ. Sci. Proc. 2022, 22, 3. https://doi.org/10.3390/IECF2022-13062
Berro G, Ramos R, Joly C, Vieira S. The Potential of Non-Vascular Epiphytes in Water Storage in the Montane Atlantic Forest. Environmental Sciences Proceedings. 2022; 22(1):3. https://doi.org/10.3390/IECF2022-13062
Chicago/Turabian StyleBerro, Gabriela, Rafael Ramos, Carlos Joly, and Simone Vieira. 2022. "The Potential of Non-Vascular Epiphytes in Water Storage in the Montane Atlantic Forest" Environmental Sciences Proceedings 22, no. 1: 3. https://doi.org/10.3390/IECF2022-13062
APA StyleBerro, G., Ramos, R., Joly, C., & Vieira, S. (2022). The Potential of Non-Vascular Epiphytes in Water Storage in the Montane Atlantic Forest. Environmental Sciences Proceedings, 22(1), 3. https://doi.org/10.3390/IECF2022-13062