Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Data Collection and Analysis
3. Results and Discussion
3.1. Descriptive Analysis
3.2. Correlation Analysis
3.3. Regression Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janarthanan, R.; Partheeban, P.; Somasundaram, K.; Elamparithi, P.A.N. Deep learning approach for prediction of air quality index in a metropolitan city. Sustain. Cities Soc. 2021, 67, 102720. [Google Scholar] [CrossRef]
- Yu, W.; Guo, Y.; Shi, L.; Li, S. The association between long-term exposure to low-level PM2.5 and mortality in the state of Queensland, Australia: A modelling study with the difference-in-differences approach. PLoS Med. 2020, 17, e1003141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ding, Z.; Xiang, Q.; Wang, W.; Huang, L.; Mao, F. Short-term effects of ambient PM1 and PM2.5 air pollution on hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. Int. J. Hyg. Environ. Health 2020, 224, 113418. [Google Scholar] [CrossRef]
- Apte, J.S.; Brauer, M.; Cohen, A.J.; Ezzati, M.; Pope, C.A. Ambient PM2.5 Reduces Global and Regional Life Expectancy. Environ. Sci. Technol. Lett. 2018, 5, 546–551. [Google Scholar] [CrossRef]
- Sugiyama, T.; Ueda, K.; Seposo, X.T.; Nakashima, A.; Kinoshita, M.; Matsumoto, H.; Ikemori, F.; Honda, A.; Takano, H.; Michikawa, T.; et al. Health effects of PM2.5 sources on children’s allergic and respiratory symptoms in Fukuoka, Japan. Sci. Total Environ. 2020, 709, 136023. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ye, Z.; Fang, Y. Spatial analysis of the effects of PM2.5 on hypertension among the middle-aged and elderly people in China. Int. J. Environ. Health Res. 2021, 31, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liang, F.; Li, J.; Lia, J.; Chena, J.; Liua, F.; Huanga, K.; Caoa, J.; Chena, S.; Xiaoc, Q.; et al. Associations of long-term exposure to ambient PM2.5 with mortality in Chinese adults: A pooled analysis of cohorts in the China-PAR project. Environ. Int. 2020, 138, 105589. [Google Scholar] [CrossRef]
- Jeong, C.H.; Wang, J.M.; Hilker, N.; Debosz, J.; Sofowote, U.; Su, Y.; Noble, M.; Healy, R.M.; Munoz, T.; Dabek-Zlotorzynska, E.; et al. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmos. Environ. 2019, 198, 55–69. [Google Scholar] [CrossRef]
- Janta, R.; Sekiguchi, K.; Yamaguch, R.; Sopajaree, K.; Pongpiachan, S.; Chetiyanukornkul, T. Ambient PM2.5, polycyclic aromatic hydrocarbons and biomass burning tracer in Mae Sot District, western Thailand. Atmos. Pollut. Res. 2020, 11, 27–39. [Google Scholar] [CrossRef]
- Lai, A.M.; Carter, E.; Shan, M.; Ni, K.; Clark, S.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.; Schauer, J.J. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2.5 in communities using biomass stoves in rural China. Sci. Total Environ. 2019, 646, 309–319. [Google Scholar] [CrossRef]
- Dragović, B.; Tzannatos, E.; Tselentis, V.; Meštrović, R.; Škurić, M. Ship emissions and their externalities in cruise ports. Transp. Res. Part D Transp. Environ. 2018, 61, 289–300. [Google Scholar] [CrossRef]
- Rødseth, K.L.; Schøyen, H.; Wangsness, P.B. Decomposing growth in Norwegian seaport container throughput and associated air pollution. Transp. Res. Part D Transp. Environ. 2020, 85, 102391. [Google Scholar] [CrossRef]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef] [PubMed]
- Bachvarova, E.; Spasova, T.; Marinski, J. Air Pollution and Specific Meteorological Conditions at the Adjacent Areas of Sea Ports. IFAC-PapersOnLine 2018, 51, 378–383. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F. Atmospheric ship emissions in ports: A review. Correlation with data of ship traffic. Atmos. Environ. X 2019, 4, 100050. [Google Scholar] [CrossRef]
- Cammin, P.; Yu, J.; Heilig, L.; Voß, S. Monitoring of air emissions in maritime ports. Transp. Res. Part D Transp. Environ. 2020, 87, 102479. [Google Scholar] [CrossRef]
- Tularam, H.; Ramsay, L.F.; Muttoo, S.; Naido, R.N.; Brunekreef, B.; Meliefset, K.; Hoogh, K. Harbor and Intra-City Drivers of Air Pollution: Findings from a Land Use Regression Model, Durban, South Africa. Int. J. Environ. Res. Public Health 2020, 15, 5406. [Google Scholar] [CrossRef] [PubMed]
- Bagtasa, G.; Cayetano, M.G.; Yuan, C.S. Seasonal variation and chemical characterization of PM in northwestern Philippines. Atmos. Chem. Phys. 2018, 18, 4965–4980. [Google Scholar] [CrossRef]
- Bencs, L.; Horemans, B.; Buczyńska, A.J.; Deutsch, F.; Degraeuwe, B.; Poppel, M.V.; Grieken, R.V. Seasonality of ship emission related atmospheric pollution over coastal and open waters of the North Sea. Atmos. Environ. X 2020, 7, 100077. [Google Scholar] [CrossRef]
- Twrdy, E.; Zanne, M. Improvement of the sustainability of ports logistics by the development of innovative green infrastructure solutions. Transp. Res. Procedia 2020, 45, 539–546. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, H.; Ying, Q.; Fu, M.; Meng, Z.; Wang, Y.; Wei, W.; Gong, H.; He, K. Impacts of shipping emissions on PM2.5 pollution in China. Atmos. Chem. Phys. 2018, 18, 15811–15824. [Google Scholar] [CrossRef]
- Fabregat, A.; Vázquez, L.; Vernet, A. Using Machine Learning to estimate the impact of ports and cruise ship traffic on urban air quality: The case of Barcelona. Environ. Model. Softw. 2021, 139, 104995. [Google Scholar] [CrossRef]
- Alamoush, A.S.; Ballini, F.; Ölçer, A.I. Ports’ technical and operational measures to reduce greenhouse gas emission and improve energy efficiency: A review. Mar. Pollut. Bull. 2020, 160, 111508. [Google Scholar] [CrossRef]
- An, J.; Lee, K.; Park, H. Effects of a Vessel Speed Reduction Program on Air Quality in Port Areas: Focusing on the Big Three Ports in South Korea. J. Mar. Sci. Eng. 2021, 9, 407. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Y.; Liao, C.; Mao, L.; Wang, Z.; Hong, N. Investigating PM2.5 responses to other air pollutants and meteorological factors across multiple temporal scales. Sci. Rep. 2020, 10, 15639. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.; Zhang, Y.; He, Y.; Gu, Z.; Yu, C. Impact of Air Humidity Fluctuation on the Rise of PM Mass Concentration Based on the High-Resolution Monitoring Data. Aerosol. Air Qual. Res. 2017, 17, 543–552. [Google Scholar] [CrossRef]
Month | PM1 (µg/m3) | PM2.5 (µg/m3) | PM10 (µg/m3) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | IQR | Max | Min | Median | IQR | Max | Min | Median | IQR | Max | Min | |
May | 12.65 | 10.5 | 29.44 | 5.91 | 17.18 | 15.3 | 42.53 | 7.36 | 19.77 | 16.7 | 51.43 | 8.71 |
June | 9.4 | 4.95 | 26.98 | 1.91 | 12.01 | 6.83 | 39.66 | 2.5 | 15 | 8.21 | 48.39 | 3.47 |
July | 9.77 | 5.63 | 22.15 | 2.57 | 12.74 | 8.84 | 31.91 | 3.13 | 14.12 | 10.8 | 37.46 | 3.93 |
August | 10.58 | 4.03 | 26.83 | 3.52 | 13.59 | 6.15 | 39.7 | 4.27 | 15.25 | 6.71 | 48.06 | 5.1 |
September | 10.39 | 10.4 | 23 | 2.14 | 13.41 | 14.5 | 35.39 | 2.71 | 14.94 | 15.2 | 41.43 | 3.51 |
October | 10.79 | 8.41 | 31.16 | 3.4 | 13.39 | 13.1 | 46.44 | 4.63 | 14.95 | 15.1 | 56.94 | 6.08 |
November | 8.485 | 5.7 | 26.35 | 2.91 | 11.22 | 8.22 | 37.68 | 3.34 | 13.14 | 9.75 | 44.49 | 3.87 |
December | 17.06 | 8.65 | 34.6 | 4.57 | 24.56 | 14.1 | 51.97 | 5.93 | 29.35 | 18.1 | 63.36 | 7.7 |
January * | 12.77 | 8.55 | 24.92 | 3.23 | 17.58 | 13.3 | 35.62 | 3.93 | 21.45 | 16.1 | 42.29 | 4.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-Hernández, B.A.; Tello-Leal, E.; Ramirez-Alcocer, U.M.; Hernandez-Resendiz, J.D. Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment. Environ. Sci. Proc. 2022, 19, 31. https://doi.org/10.3390/ecas2022-12856
Macías-Hernández BA, Tello-Leal E, Ramirez-Alcocer UM, Hernandez-Resendiz JD. Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment. Environmental Sciences Proceedings. 2022; 19(1):31. https://doi.org/10.3390/ecas2022-12856
Chicago/Turabian StyleMacías-Hernández, Bárbara A., Edgar Tello-Leal, Ulises Manuel Ramirez-Alcocer, and Jaciel David Hernandez-Resendiz. 2022. "Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment" Environmental Sciences Proceedings 19, no. 1: 31. https://doi.org/10.3390/ecas2022-12856
APA StyleMacías-Hernández, B. A., Tello-Leal, E., Ramirez-Alcocer, U. M., & Hernandez-Resendiz, J. D. (2022). Particulate Matter (PM2.5) Concentration Forecasting through an Artificial Neural Network in Port City Environment. Environmental Sciences Proceedings, 19(1), 31. https://doi.org/10.3390/ecas2022-12856