LSTM Model for Wind Speed and Power Generation Nowcasting †
Abstract
:1. Introduction
2. Methods and Materials
3. Results and Discussion
Verification of the Study Cases
4. Conclusions
- The LSTM model constructed both with data from the Los Cocos tower and with the combination of the same data with the SisPI forecasts demonstrates a very strong ability to forecast the force of the wind.
- The forecasts including the SisPI data have a slightly higher MAE and RMSE; however, their correction is possible as they are systematic errors.
- In the absence of observations, it is possible to use the SisPI data as an alternative for very short-term forecasting.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Roque, A.; Yu, W. Informe Científico Técnico del Proyecto Atlas Eólico de Cuba; Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2014. [Google Scholar]
- Rosell, D. Conferencia Magistral “Desarrollo de las Fuentes Renovables de Energía. In Proceedings of the Congreso Internacional de Energía Renovable, Ahorro y Educación Energética”Palacio de Las Convenciones, La Habana, Cuba, 25–28 May 2015. [Google Scholar]
- Sapronova, C. Meissner & M. MANA 2015. Short Time Ahead Wind Power Production Forecast. Proyecto ENERGIX 2015–2016 Patrocinado por el Consejo de Investigación Noruego. Available online: https://windeurope.org/summit2016/conference/submit-an-abstract/pdf/246989398891.pdf (accessed on 13 April 2022).
- Carpinone, A.; Giorgio, M.; Langella, R.; Testa, A. Markov chain modeling for very-short-term wind power forecasting. Electric. Power Syst. Res. 2015, 122, 152–158. [Google Scholar] [CrossRef]
- Appice, A.; Pravilovic, S.; Lanza, A.; Malebra, D. Very Short-Term Wind Speed Forecasting Using Spatio-Temporal Lazy Learning; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Senkal, S.; Ozgonenel, O. Performance Analysis of Artificial and Wavelet Neural Networks for Short Term Wind Speed Prediction. In Proceedings of the 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013; pp. 196–198. [Google Scholar] [CrossRef]
- Hinojosa, M. Pronóstico de Viento a Muy Corto Plazo Para Parques Eólicos. Bachelor’s Thesis, University of Havana, Habana, Cuba, 2015. [Google Scholar]
- Roque, A.; Borrajero, I.; Hernández, A.; Sierra, M. Short-term energy forecast for the Gibara I and Los Canarreos Wind Farms; Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2015. [Google Scholar]
- Roque, A.; Sierra, M.; Borrajero, I.; Ferrer, A.H. Short-Term Wind Forecast in Meteorological Reference Towers for the Cuban Wind Program; Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2015. [Google Scholar]
- Martínez-Pérez, B.; Roque-Rodríguez, A. Very short-term energy forecast for the Gibara I Wind Farm using an autoregressive model. Rev. Cuba. Meteorol. 2019, 25, 167–180. [Google Scholar]
- Sierra-Lorenzo, M.; Ferrer-Hernández, A.L.; Hernández-Valdés, R.; González-Mayor, Y.; Cruz-Rodríguez, R.C.; Borrajero-Montejo, I.; Rodríguez-Genó, C.F. Sistema Automático de Predicción a Mesoescala de Cuatro Ciclos Diarios; Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2014. [Google Scholar]
- Sierra-Lorenzo, M.; Borrajero-Montejo, I.; Ferrer-Hernández, A.L.; Hernández-Valdés, R.; Morfa-Ávalos, Y.; Morejón-Loyola, Y.; Hinojosa-Fernández, M. Estudios de Sensibilidad del Sispi a Cambios de la pbl, la Cantidad de Niveles Verticales y, las Parametrizaciones de Microfısica y Cúmulos, a Muy Alta Resolución; Technical Report; Instituto de Meteorología de Cuba: Havana, Cuba, 2017. [Google Scholar]
Metrics | 11 March 2019 | 28 May 2019 | 2 August 2019 | 18 November 2019 | ||||
---|---|---|---|---|---|---|---|---|
MAE | 0.36 | 0.39 | 0.50 | 1.15 | 0.22 | 0.60 | 0.15 | 0.77 |
Pearson correlation | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
RMSE | 0.23 | 0.22 | 0.36 | 1.40 | 0.17 | 0.47 | 0.04 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Barrios, A.; Sierra-Lorenzo, M.; Roque-Rodríguez, A.E. LSTM Model for Wind Speed and Power Generation Nowcasting. Environ. Sci. Proc. 2022, 19, 30. https://doi.org/10.3390/ecas2022-12851
Fuentes-Barrios A, Sierra-Lorenzo M, Roque-Rodríguez AE. LSTM Model for Wind Speed and Power Generation Nowcasting. Environmental Sciences Proceedings. 2022; 19(1):30. https://doi.org/10.3390/ecas2022-12851
Chicago/Turabian StyleFuentes-Barrios, Adrián, Maibys Sierra-Lorenzo, and Alfredo E. Roque-Rodríguez. 2022. "LSTM Model for Wind Speed and Power Generation Nowcasting" Environmental Sciences Proceedings 19, no. 1: 30. https://doi.org/10.3390/ecas2022-12851
APA StyleFuentes-Barrios, A., Sierra-Lorenzo, M., & Roque-Rodríguez, A. E. (2022). LSTM Model for Wind Speed and Power Generation Nowcasting. Environmental Sciences Proceedings, 19(1), 30. https://doi.org/10.3390/ecas2022-12851