Study on the Relationship of WSIS of PM2.5 with NH3 and Other Trace Gases over Delhi, India †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ianniello, A.; Spataro, F.; Esposito, G.; Allegrini, I.; Hu, M.; Zhu, T. Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmos. Chem. Phys. 2011, 11, 10803–10822. [Google Scholar] [CrossRef]
- Meng, Z.Y.; Lin, W.L.; Jiang, X.M.; Yan, P.; Wang, Y.; Zhang, Y.M.; Yu, X.L. Characteristics of atmospheric ammonia over Beijing, China. Atmos. Chem. Phys. 2011, 11, 6139–6151. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Critical review of receptor modelling for particulate matter: A case study of India. Atmos. Environ. 2012, 49, 1–12. [Google Scholar] [CrossRef]
- Sharma, S.K.; Mukherjee, S.; Choudhary, N.; Rai, A.; Ghosh, A.; Chatterjee, A.; Vijayan, N.; Mandal, T.K. Seasonal variation and sources of carbonaceous species and elements of PM2.5 and PM10 over the eastern Himalaya. Environ. Sci. Pollut. Res. 2021, 28, 51642–51656. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Murari, V.; Kumar, M.; Barman, S.C.; Banerjee, T. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environ. Pollut. 2017, 223, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.F.; He, L.Y.; Hu, M.; Canagaratna, M.R.; Sun, Y.; Zhang, Q.; Zhu, T.; Xue, L.; Zeng, L.W.; Liu, X.G.; et al. Highly time-resolved chemical characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos. Chem. Phys. 2010, 10, 8933–8945. [Google Scholar] [CrossRef]
- Khemani, L.T.; Momin, G.A.; Naik, M.S.; Rao, P.P.; Safai, P.D.; Murty, A.S.R. Influence of alkaline particulates on pH of cloud and rain water in India. Atmos. Environ. 1987, 21, 1137–1145. [Google Scholar] [CrossRef]
- Parmar, R.S.; Satsangi, G.S.; Lakhani, A.; Srivastava, S.S.; Prakash, S. Simultaneous measurements of ammonia and nitric acid in ambient air at Agra (27°10′ N and 78°05′ E) (India). Atmos. Environ. 2001, 35, 5979–5988. [Google Scholar] [CrossRef]
- Sharma, S.K.; Datta, A.; Saud, T.; Saxena, M.; Mandal, T.K.; Ahammed, Y.N.; Arya, B.C. Seasonal variability of ambient NH3, NO, NO2 and SO2 over Delhi. J. Environ. Sci. 2010, 22, 1023–1028. [Google Scholar] [CrossRef]
- Saraswati; Sharma, S.K.; Mandal, T.K. Five-year measurement of ambient ammonia and its interaction with other trace gases at an urban site of Delhi, India. Meteo. Atmos. Phys. 2018, 130, 241–257. [Google Scholar] [CrossRef]
- Sharma, S.K.; Saxena, M.; Mandal, T.K. Characteristics of gaseous and particulate ammonia and their role in the formation of secondary inorganic particulate matter at Delhi, India. Atmos. Res. 2019, 218, 34–49. [Google Scholar]
- Sharma, S.K.; Mandal, T.K.; Kumar, M.; Gupta, N.C.; Pathak, H.; Harit, R.C.; Saxena, M. Measurement of ambient ammonia over the National Capital Region of Delhi, India. MAPAN 2014, 29, 165–173. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Walker, J.T.; Whitall, D.R.; Robarge, W.; Paerl, H.W. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmos. Environ. 2004, 38, 1235–1246. [Google Scholar] [CrossRef]
- Behera, S.N.; Sharma, M. Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Sci. Total Environ. 2010, 408, 3569–3575. [Google Scholar] [CrossRef] [PubMed]
Seasons | NH3 | NO2 | NO | SO2 |
---|---|---|---|---|
Winter | 20.9 ± 4.1 | 17.7 ± 4.5 | 18.1 ± 4.4 | 2.24 ± 0.37 |
Summer | 19.4 ± 4.1 | 19.1 ± 4.3 | 21.4 ± 5.4 | 2.25 ± 0.43 |
Monsoon | 14.0 ± 2.5 | 14.9 ± 3.7 | 20.4 ± 5.3 | 2.55 ± 0.26 |
Post-Monsoon | 22.2 ± 3.9 | 20.0 ± 4.2 | 23.3 ± 4.5 | 2.77 ± 0.36 |
Average | 19.1 ± 3.8 | 17.9 ± 4.2 | 20.8 ± 4.3 | 2.45 ± 0.47 |
Seasons | PM2.5 | Cl− | SO42+ | NO3− | NH4+ |
---|---|---|---|---|---|
Winter | 190 ± 82 | 15.6 ± 8.9 | 19.6 ± 6.9 | 22.7 ± 9.5 | 17.5 ± 2.8 |
Summer | 92 ± 30 | 7.5 ± 3.1 | 8.5 ± 2.2 | 5.0 ± 2.8 | 5.8 ± 3.5 |
Monsoon | 86 ± 33 | 6.2 ± 2.1 | 9.9 ± 1.9 | 4.7 ± 2.4 | 3.9 ± 1.2 |
Post-Monsoon | 171 ± 72 | 7.8 ± 3.0 | 11.3 ± 3.4 | 10.9 ± 3.8 | 9.3 ± 4.4 |
Average | 135 ± 45 | 9.3 ± 3.2 | 12.3 ± 4.1 | 10.8 ± 4.8 | 9.1 ± 3.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotnala, G.; Sharma, S.K.; Mandal, T.K. Study on the Relationship of WSIS of PM2.5 with NH3 and Other Trace Gases over Delhi, India. Environ. Sci. Proc. 2022, 19, 24. https://doi.org/10.3390/ecas2022-12817
Kotnala G, Sharma SK, Mandal TK. Study on the Relationship of WSIS of PM2.5 with NH3 and Other Trace Gases over Delhi, India. Environmental Sciences Proceedings. 2022; 19(1):24. https://doi.org/10.3390/ecas2022-12817
Chicago/Turabian StyleKotnala, Garima, Sudhir Kumar Sharma, and Tuhin Kumar Mandal. 2022. "Study on the Relationship of WSIS of PM2.5 with NH3 and Other Trace Gases over Delhi, India" Environmental Sciences Proceedings 19, no. 1: 24. https://doi.org/10.3390/ecas2022-12817
APA StyleKotnala, G., Sharma, S. K., & Mandal, T. K. (2022). Study on the Relationship of WSIS of PM2.5 with NH3 and Other Trace Gases over Delhi, India. Environmental Sciences Proceedings, 19(1), 24. https://doi.org/10.3390/ecas2022-12817