Setting Up of a New Local and Ecological Substrate for Tomato Soil-Less Cultivation to Cope with Saline Soils †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Cactus Fiber Substrate
2.2. Physico-Chemical Analysis of the Three Mixtures
2.3. Growth Attributes Assessment and Fruit Quality and Folaire Analysis
2.4. Phytotoxicity Study of the Different Mixtures Used
2.5. Economic Study of New Substrates Based on Cactus Fibers and Coconut Fibers for Greenhouse Tomatoes
3. Results and Discussion
3.1. Physico-Chemical Characteristics of the Mixtures Based on Cactus and Coconut Fibers
3.2. Evaluation of the Phyto-Toxic Power of the Different Mixtures Used
3.3. Economic Return of the Substrate Mixtures Based on Cactus Fiber and Coconut Fiber on the Cultivation of Round Tomato under Greenhouse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Axelos, M.A.V.; Bamière, L.; Colin, F.; Dourmad, J.Y.; Duru, M.; Gillot, S.; Kurek, B.; Mathias, J.D.; Méry, J.; O’Donohue, M.; et al. Réflexion Prospective Interdisciplinaire Bioéconomie; INRAE: Paris, France, 2020; p. 70. [Google Scholar]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can soil-less crop production be a sustainable option for soil conservation and future agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
- Choukr-Allah, R.; Nghira, A.; Hirich, A.; Bouchaou, L. Water Resources Master Plan for Sustainable Development of the Souss-Massa River Basin. In The Souss-Massa River Basin, Morocco; Choukr-Allah, R., Ragab, R., Bouchaou, L., Barceló, D., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; Volume 53, pp. 1–26. [Google Scholar]
- Guidi, T. Selection of Substrate Amendements Improving Hydrological Properties of Extensive Green Roofs in Japan. Master’s Thesis, Université de Liège, Liège, Belgium, 2019. [Google Scholar]
- Gonzalez-Julian, J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021, 104, 659–690. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Ivanova, L.A.; Kremenetskaya, I.P.; Gorbacheva, T.T.; Drogobuzhskaya, S.V.; Lashchuk, V.V.; Markovskaya, E.F. Rehabilitation of Industrial Barren in Arctic Region Using Mining Wastes. Open Ecol. J. 2018, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Özenç, D.B. Growth and Transpiration of Tomato Seedlings Grown in Hazelnut Husk Compost Under Water-Deficit Stress. Compost. Sci. Util. 2008, 16, 125–131. [Google Scholar] [CrossRef]
- Landis, T.D.; Jacobs, D.F.; Wilkinson, K.M.; Luna, T. Growing media. Contain. Tree Nurs. Man. 1990, 2, 41–85. [Google Scholar]
- Mathieu, C.; Pieltain, F.; Jean, A.; Chossat, J.C.; Valentin, C. Physical Analysis of Soils: Selected Methods; Lavoisier TEC & DOC: Paris, France, 1998; p. 275. [Google Scholar]
- Mustin, M. Le Compost: La Gestion de la Matière Organique; Francois Dubusc: Paris, France, 1987; p. 954. [Google Scholar]
M0 | M1 | M2 | M3 | C | |
---|---|---|---|---|---|
% OM | 82 | 85 | 90 | 92 | 96 |
Cation exchange capacity CEC (meq/100 g of dry weight) | 13.33 | 14.50 | 16.66 | 20.80 | 26.90 |
Water retention (mL/L) | 225 | 240 | 260 | 330 | 350 |
Bulk density Da (g/cm3) | 0.30 | 0.25 | 0.23 | 0.20 | 0.18 |
Real density Dr (g/cm3) | 1.67 | 1.60 | 1.57 | 1.55 | 1.55 |
Total porosity in % of volume | 82 | 84 | 85 | 87 | 90 |
pH at 23 °C | 8.4 | 7.9 | 7.4 | 7.1 | 6.6 |
EC (mS/cm) | 3.32 | 3.15 | 2.92 | 2.08 | 0.40 |
C/N | 43.5 | 41.3 | 43.48 | 46.00 | 52.00 |
Substrat | NH4+ | NO3− | Phosphorus | Potassium | Ca | Mg | Fe | Mn | Cu | Zn |
---|---|---|---|---|---|---|---|---|---|---|
M0 | 12.60 | 42.00 | 710 | 180 | 0.19 | 0.007 | 0.071 | 0.004 | 0.0017 | 0.0013 |
M1 | 28.00 | 38.50 | 700 | 176 | 0.19 | 0.004 | 0.063 | 0.004 | 0.0017 | 0.0014 |
M2 | 57.75 | 38.75 | 340 | 80 | 0.15 | 0.004 | 0.042 | 0.003 | 0.0018 | 0.0013 |
M3 | 56.00 | 38.60 | 90 | 40 | 0.11 | 0.004 | 0.014 | 0.001 | 0.0018 | 0.0090 |
C | 58.00 | 37.00 | 80 | 30 | 0.10 | 0.003 | 0.010 | 0.001 | 0.0015 | 0.0080 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majdoubi, M.; El Malahi, S.; Choukr-Allah, R.; Mokhtari, M. Setting Up of a New Local and Ecological Substrate for Tomato Soil-Less Cultivation to Cope with Saline Soils. Environ. Sci. Proc. 2022, 16, 6. https://doi.org/10.3390/environsciproc2022016006
Majdoubi M, El Malahi S, Choukr-Allah R, Mokhtari M. Setting Up of a New Local and Ecological Substrate for Tomato Soil-Less Cultivation to Cope with Saline Soils. Environmental Sciences Proceedings. 2022; 16(1):6. https://doi.org/10.3390/environsciproc2022016006
Chicago/Turabian StyleMajdoubi, Mohamed, Soumia El Malahi, Redouane Choukr-Allah, and Mimoun Mokhtari. 2022. "Setting Up of a New Local and Ecological Substrate for Tomato Soil-Less Cultivation to Cope with Saline Soils" Environmental Sciences Proceedings 16, no. 1: 6. https://doi.org/10.3390/environsciproc2022016006
APA StyleMajdoubi, M., El Malahi, S., Choukr-Allah, R., & Mokhtari, M. (2022). Setting Up of a New Local and Ecological Substrate for Tomato Soil-Less Cultivation to Cope with Saline Soils. Environmental Sciences Proceedings, 16(1), 6. https://doi.org/10.3390/environsciproc2022016006