The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review †
Abstract
:1. Introduction
Methodology
2. Current Overview of Global Food Production
3. Significance of the Pollinator
4. Final Considerations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Vogel, S. Blütenbiologische Typen als Elemente der Sippengliederung, dargestellt anhand der Flora Südafrikas. Bot. Stud. 1954, 1, 1–338. [Google Scholar]
- Faegri, K.; Van-der-Pij, L. The Principles of Pollination Ecology; Pergamon Press: Oxford, UK, 1979. [Google Scholar]
- Rosas-Guerrero, V.; Aguilar, R.; Martén-Rodríguez, S.; Ashworth, L.; Lopezaraiza-Mikel, M.; Bastida, J.M.; Quesada, M. A quantitative review of pollination syndromes: Do floral traits predict effective pollinators? Ecol. Lett. 2014, 17, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, R.J.; Irwin, R.E.; Flanagan, R.J.; Karron, J.D. Ecology and evolution of plant–pollinator interactions. Ann. Bot. 2009, 103, 1355–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ollerton, J.; Rachael, W.; Sam, T. How many flowering plants are pollinated by animals? Oikos 2011, 120, 321–326. [Google Scholar] [CrossRef]
- Hu, S.; Dilcher, D.l.; Jarzen, D.M.; Taylor, D.W. Early steps of angiosperm-pollinator coevolution. Proc. Natl. Acad. Sci. USA 2007, 105, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.D. Value of Bee Pollination to U.S. Agriculture. Bull. Entomol. Soc. Am. 1983, 29, 50–51. [Google Scholar] [CrossRef]
- IPBES-Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The Assessment Report of the Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Potts, S.G., Imperatriz-Fonseca, V.L., Ngo, H.T., Eds.; IPBES: Bonn, Germany, 2016. [Google Scholar]
- Gardiner, M.A.; Tuell, J.K.; Isaacs, R.; Gibbs, J.; Ascher, J.S.; Landis, D.A. Implica-tions of three biofuel crops for beneficial arthropods in agricultural landscapes. Bioenergy Res. 2010, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Romero, M.; Quezada-Euàn, J. Pollinators in biofuel agricultural systems: The diversity and performance of bees (Hyme-noptera: Apoidea) on Jatropha curcas in Mexico. Apidologie 2013, 44, 419–429. [Google Scholar] [CrossRef]
- Pires, V.C.; Silveira, F.A.; Sujii, E.R.; Torezani, K.R.S.; Rodrigues, W.A.; Albuquerque, F.A.; Rodrigues, S.M.M.; Salomão, A.N.; Pires, C.S.S. Importance of bee pollination for cotton production in conventional and organic farms in Brazil. J. Pollinat. Ecol. 2014, 13, 151–160. [Google Scholar] [CrossRef]
- Easton-Calabria, A.; Demary, K.C.; Oner, N.J. Beyond Pollination: Honey Bees (Apis mellifera) as Zootherapy Keystone Species. Front. Ecol. Evol. 2019, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.S.; Cunningham, A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Giannini, T.C.; Cordeiro, G.D.; Freitas, B.M.; Saraiva, A.M.; Imperatriz-Fonseca, V.L. The Dependence of Crops for Pollinators and the Economic Value of Pollination in Brazil. J. Econ. Entomol. 2015, 108, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Wolowski, M.; Agostini, K.; Rech, A.; Varassin, I.; Maues, M.; Freitas, L.; Carneiro, L.; Bueno, R.; Consolaro, H.; Carvalheiro, L.; et al. Relatório Temático Sobre Polinização, Polinizadores e Produção de Alimentos No Brasil; Plataforma Brasileira de Biodiversidade e Serviços Ecossistêmicos (BPBES) e a Rede Brasileira de Interações Planta-Polinizador (REBIPP): Campinas, Brasil, 2019. [Google Scholar] [CrossRef]
- Oliveira, W.; Silva, J.L.S.; Porto, R.G.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Plant and Pollination Blindness: Risky Business for Human Food Security. BioScience 2020, 70, 109–110. [Google Scholar] [CrossRef]
- Hill, R.; Nates-Parra, G.; Quezada-Euán, J.J.G.; Buchori, D.; LeBuhn, G.; Maués, M.M.; Pert, P.L.; Kwapong, P.K.; Saeed, S.; Breslow, S.J.; et al. Biocultural approaches to pollinator conservation. Nat. Sustain. 2019, 2, 214–222. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization. ‘Climatesmart’ Agriculture, Policies, Practices and Finances for Food Security, Adaptation and Mitigation; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. Food and Agriculture Organization of The United Nations. Land Use in Agriculture by the Numbers. 2020. Available online: http://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 11 June 2021).
- Garibaldi, L.A.; Aizen, M.A.; Klein, A.M.; Cunningham, S.A.; Harder, L.D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. USA 2011, 108, 5909–5914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppelt, R.; Beckmann, M.; Ceausu, S.; Cord, A.; Gerstner, K.; Gurevitch, J.; Kambach, S.; Klotz, S.; Mendenhall, C.; Phillips, H.; et al. Harmonizing biodiversity conservation and productivity in the context of increasing demands on landscapes. Bioscience 2016, 66, 890–896. [Google Scholar] [CrossRef] [PubMed]
- De Palma, A.; Abrahamczyk, S.; Aizen, M.; Albrecht, M.; Basset, Y.; Bates, A.; Blake, R.J.; Boutin, C.; Bugter, R.; Connop, S.; et al. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases. Sci. Rep. 2016, 6, 31153. [Google Scholar] [CrossRef] [Green Version]
- Aizen, M.A.; Aguiar, S.; Biesmeijer, J.C.; Garibaldi, L.A.; Inouye, D.W.; Jung, C.; Martins, D.J.; Medel, R.; Morales, C.L.; Ngo, H.; et al. Global agricultural productivity is threatened by increasing pollinator dependence without a parallel increase in crop diversification. Glob. Chang. Biol. 2019, 25, 3516–3527. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Hertel, T.W.; Ramankutty, N.; Baldos, U.L.C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl. Acad. Sci. USA 2014, 111, 13799–13804. [Google Scholar] [CrossRef] [Green Version]
- Baldos, U.L.C.; Hertel, T.W. Global food security in 2050: The role of agricultural productivity and climate change. Aust. J. Agric. Resour. Econ. 2014, 58, 554–570. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2012, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandratos, N. World Food and Agriculture to 2030/50 Proceedings of a Technical Meeting of Experts; FAO: Rome, Italy, 2009; pp. 1–32. [Google Scholar]
- Erb, K.H.; Lauk, C.; Kastner, T.; Mayer, A.; Theurl, M.C.; Haberl, H. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 2016, 7, 11382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Von Grebmer, K.; Bernstein, J.; Alders, R.; Dar, O.; Kock, R.; Rampa, F.; Wiemers, M.; Acheampong, K.; Hanano, A.; Higgins, B.; et al. 2020 Global Hunger Index: One Decade to Zero Hunger: Linking Health and Sustainable Food Systems; Welthungerhilfe: Bonn, Germany; Concern Worldwide: Dublin, Ireland, 2020. [Google Scholar]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Sami, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Lautenbach, S.; Seppelt, R.; Liebscher, J.; Dormann, C.F. Spatial and Temporal Trends of Global Pollination Benefit. PLoS ONE 2012, 7, e35954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porto, R.G.; De Almeida, R.F.; Cruz-Neto, O.; Tabarelli, M.; Viana, B.F.; Peres, C.A.; Lopes, A.V. Pollination ecosystem services: A comprehensive review of economic values, research funding and policy actions. Food Secur. 2020, 12, 1425–1442. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; INITIATIVE, the Insect Pollinators. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 2013, 11, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Wietzke, A.; Westphal, C.; Gras, P.; Kraft, M.; Pfohl, K.; Karlovky, P.; Pawelzik, E.; Tscharntke, T.; Smit, I. Insect pollination as a key factor for strawberry physiology and marketable fruit quality. Agric. Ecosyst. Environ. 2018, 258, 197–204. [Google Scholar] [CrossRef]
- Danner, M.A.; Citadin, I.; Sasso, S.A.Z.; Sachet, M.R.; Malagi, G. Modo de reprodução e viabilidade do pólen de três espécies de jabuticabeira. Rev. Bras. Frutic. 2011, 33, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Hemberger, J.; Crossley, M.S.; Gratton, C. Historical decrease in agricultural landscape diversity is associated with shifts in bumble bee species occurrence. Ecol. Lett. 2021, 24, 1800–1813. [Google Scholar] [CrossRef] [PubMed]
- FAO. Conservation and management of pollinators for sustainable agriculture—The international response. In Solitary Bees: Conservation, Rearing and Management for Pollination; Freitas, B.M., Pereira, J.O.P., Eds.; Imprensa Universitária: Fortaleza, Brazil, 2004; pp. 19–22. [Google Scholar]
- SEBRAE. Serviço Brasileiro de Apoio às Micro e Pequenas Empresas. Conheça a Atividade de Aluguel de Colmeias. 2015. Available online: https://www.sebrae.com.br/sites/PortalSebrae/artigos/conheca-a-atividade-de-aluguel-de-colmeias,5661cc31effce410VgnVCM2000004d00210aRCRD. (accessed on 29 July 2021).
- Reilly, J.R.; Artz, D.R.; Biddinger, D.; Bobiwash, K.; Boyle, N.K.; Brittain, C.; Brokaw, J.; Campbell, J.W.; Daniels, J.; Elle, E.; et al. Crop production in the USA is frequently limited by a lack of pollinators. Proc. R. Soc. B 2020, 287, 20200922. [Google Scholar] [CrossRef] [PubMed]
Popular Name | Scientific Name | Popular Name | Scientific Name |
---|---|---|---|
Coffee | Coffea spp. | Fig | Ficus carica |
Soybean | Glycine max | Atemoya | Annona squamosa |
Tomato | Lycopersicon spp. | Kiwi fruit | Actinidia deliciosa |
Seed cotton | Gossypium spp. | Castor bean | Ricinus communis |
Cocoa bean | Theobroma cacao | Broad bean | Vicia faba |
Orange | Citrus spp. | Persimmon | Cavanillea philippensis |
Watermelon | Citrullus lanatus | Kaki | Diospyros kaki |
Passionfruit | Passiflora edulis | Sweet passion fruit | Passiflora alata |
Apple | Pyrus malus | Quince | Cydonia spp. |
Melonseed | Cucumis melo | Cow peas | Vigna unguiculata |
Bean | Phaseolus spp. | Linseed | Linum usitatissimum |
Coconut | Cocos nucifera | Lychee | Litchi chinensis |
Guava | Psidium guajava | Bean | Phaseolus vulgaris |
Peach | Prunus persica | Pomegranate | Punica granatum |
Avocado | Persea americana | Cherry | Eugenia uniflora |
Sunflower seed | Helianthus annuus | Surinam cherry | Stenocalyx michelii |
Papaya | Carica papaya | Tree cotton | Gossypium arboreum |
Plum | Prunus spp. | Cambuci | Campomanesia phaea |
Annatto | Bixa orellana | Gliricídia | Gliricidia sepium |
Tangerine | Citrus reticulata | Brazil nut | Bertholletia excelsa |
Cashew nut | Anacardium occidentale | Macadamia | Macadamia integrifolia |
Lemon | Citrus spp. | Mombin | Spondias mombin |
Guarana | Paullinia cupana | Pumpkin | Cucurbita spp. |
Groundnut | Arachis hypogaea | Vanilla | Vanilla spp. |
Peppers | Capsicum annuum | Soursop | Annona muricata |
Cupuaçu | Theobroma grandiflorum | Adesmia | Adesmia latifolia |
Acerola | Malpighia emarginata | Araticum | Annona crassiflora |
Pear | Pyrus communis | Apricot | Prunus armeniaca |
Oil palm | Elaeis guineensis | Strawberries | Fragaria spp. |
Almond | Amygdalus communis | Mango | Mangifera indica |
Eggplant | Solanum melongena |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peixoto, P.G.; Martins, H.L.; Pinto, B.C.; Franco, A.L.; Amaral, L.S.; Castro, C.V.d. The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. Environ. Sci. Proc. 2022, 15, 7. https://doi.org/10.3390/environsciproc2022015007
Peixoto PG, Martins HL, Pinto BC, Franco AL, Amaral LS, Castro CVd. The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. Environmental Sciences Proceedings. 2022; 15(1):7. https://doi.org/10.3390/environsciproc2022015007
Chicago/Turabian StylePeixoto, Pedro Gomes, Heytor Lemos Martins, Bruna Cristina Pinto, Ana Luiza Franco, Larissa Souza Amaral, and Cristina Veloso de Castro. 2022. "The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review" Environmental Sciences Proceedings 15, no. 1: 7. https://doi.org/10.3390/environsciproc2022015007
APA StylePeixoto, P. G., Martins, H. L., Pinto, B. C., Franco, A. L., Amaral, L. S., & Castro, C. V. d. (2022). The Significance of Pollination for Global Food Production and the Guarantee of Nutritional Security: A Literature Review. Environmental Sciences Proceedings, 15(1), 7. https://doi.org/10.3390/environsciproc2022015007