# Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types

^{*}

## Abstract

**:**

## 1. Introduction

#### 1.1. Novelty and Significance of Demand Factors

#### 1.2. Structure and Objective of the Work

- 1.
- Analysis of the driving behaviour in terms of:
- Day of the week
- Purpose of the trip
- Number of trips per day
- Distance of the trip

- 2.
- Generation of weekly charging profiles depending on the available charging power and the specified area type
- 3.
- Development of DF curves for:
- Six dominant charging powers: (3.7, 11, 22, 50, 150 and 350) kW
- Seven area types (specified in Section 2)
- 500 CPs

- 4.
- Implementation of a curve-fitting algorithm for charging powers with 1 kW steps starting from 3.7 kW up to 350 kW

## 2. Database

- Urban Region: Metropolis
- Urban Region: Regiopolis, Large City
- Urban Region: Medium-sized City, Urbanised Area
- Urban Region: Small-town Area, Village Area
- Rural Region: Central City
- Rural Region: Medium-sized City, Urbanised Area
- Rural Region: Small-town Area, Village Area

## 3. Method

#### 3.1. General Conditions

#### 3.2. Simulation Tool

- Independent of the number of consecutive charging processes for the single CP (e.g., 10 EVs are charging after one another at the same single CP), the maximum power drawn simultaneously from the electric grid equals the nominal power of this single CP. Hence, the DF equals 1 (see Equation (1) in Section 3.3). Naturally, this situation does not apply if several CPs are available, which is the main investigation in the contribution. With the focus on strategic electric grid planning, the question that the contribution aims to answer is not how many EVs can be charged with a limited number of CPs but rather how many CPs are being used at the same time when there is unlimited access to CPs.
- Since the CPs are available at the destinations, the travelling distance to a CP is already included in the applied statistical driving data (Figure 3, Figure A1, Figure A2, Figure A3, Figure A4, Figure A5 and Figure A6) for the different area types. Hence, the travel distance and time of the EV(s) to a CP are modelled by generating the driving profile(s) to a certain destination.

#### 3.3. Generation of Demand Factors

Sub Demand_factor_tool () |

For area type = 1 to 7 |

For charging power = {3.7, 11, 22, 50, 150, 350} |

For number of EVs = 1 to 500 with a step of 10 |

For simulated week = 1 to 5200 |

generate charging profiles for the number of EVs |

overlap generated charging profiles |

If maximum charging profile < charging profile then |

maximum charging profile = charging profile |

End if |

next simulated week |

calculate demand factor |

Next number of EVs |

Next charging power |

Next area type |

_{n,p}is the DF resulting from the cumulative charging power P

_{n,p}for n CPs of the nominal power p [20].

## 4. Results of the Simulation

#### 4.1. Demand Factors According to the Area Types

#### 4.2. Demand Factors According to the Charging Powers

## 5. Discussion

#### 5.1. Influence of the General Conditions and Evaluation of the Method

#### 5.2. Sensitivity Analysis to Other Studies

_{n,p}is the cumulative charging power and DF

_{n,p}is the DF for n CPs of the nominal power p.

## 6. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

**Figure A1.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Urban Region: Regiopolis, Large City”.

**Figure A2.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Urban Region: Medium-sized City, Urbanised Area”.

**Figure A3.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Urban Region: Small-town Area, Village Area”.

**Figure A4.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Rural Region: Central City”.

**Figure A5.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Rural Region: Medium-sized City, Urbanised Area”.

**Figure A6.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Rural Region: Small-town Area, Village Area”.

## Appendix B

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.44 | 0.46 | 0.52 | 0.64 | 0.85 | 1.00 |

10 | 0.27 | 0.28 | 0.33 | 0.41 | 0.57 | 1.00 |

50 | 0.09 | 0.10 | 0.12 | 0.17 | 0.25 | 0.56 |

100 | 0.06 | 0.06 | 0.08 | 0.12 | 0.18 | 0.43 |

500 | 0.02 | 0.02 | 0.03 | 0.05 | 0.09 | 0.23 |

**Table A2.**Demand factors for the area type “Urban Region: Regiopolis, Large City” and six charging powers.

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.44 | 0.46 | 0.54 | 0.68 | 0.93 | 1.00 |

10 | 0.27 | 0.29 | 0.33 | 0.42 | 0.58 | 1.00 |

50 | 0.09 | 0.10 | 0.12 | 0.16 | 0.24 | 0.54 |

100 | 0.06 | 0.06 | 0.08 | 0.11 | 0.17 | 0.40 |

500 | 0.02 | 0.02 | 0.03 | 0.05 | 0.09 | 0.22 |

**Table A3.**Demand factors for the area type “Urban Region: Medium-sized City, Urbanized Area” and six charging powers.

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.45 | 0.48 | 0.56 | 0.71 | 0.98 | 1.00 |

10 | 0.28 | 0.29 | 0.35 | 0.46 | 0.65 | 1.00 |

50 | 0.10 | 0.10 | 0.13 | 0.19 | 0.29 | 0.68 |

100 | 0.06 | 0.07 | 0.09 | 0.13 | 0.21 | 0.51 |

500 | 0.02 | 0.03 | 0.04 | 0.06 | 0.11 | 0.28 |

**Table A4.**Demand factors for the area type “Urban Region: Small-town Area, Village Area” and six charging powers.

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.46 | 0.48 | 0.56 | 0.72 | 0.99 | 1.00 |

10 | 0.29 | 0.31 | 0.36 | 0.46 | 0.65 | 1.00 |

50 | 0.10 | 0.11 | 0.14 | 0.20 | 0.29 | 0.69 |

100 | 0.07 | 0.07 | 0.10 | 0.14 | 0.22 | 0.54 |

500 | 0.02 | 0.03 | 0.04 | 0.07 | 0.12 | 0.33 |

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.46 | 0.48 | 0.57 | 0.73 | 1.00 | 1.00 |

10 | 0.28 | 0.30 | 0.35 | 0.45 | 0.64 | 1.00 |

50 | 0.09 | 0.10 | 0.13 | 0.18 | 0.26 | 0.61 |

100 | 0.06 | 0.07 | 0.08 | 0.12 | 0.19 | 0.46 |

500 | 0.02 | 0.02 | 0.04 | 0.06 | 0.10 | 0.26 |

**Table A6.**Demand factors for the area type “Rural Region: Medium-sized City, Urbanized Area” and six charging powers.

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.45 | 0.48 | 0.57 | 0.76 | 1.00 | 1.00 |

10 | 0.28 | 0.30 | 0.36 | 0.47 | 0.67 | 1.00 |

50 | 0.10 | 0.10 | 0.13 | 0.18 | 0.27 | 0.63 |

100 | 0.06 | 0.07 | 0.09 | 0.13 | 0.20 | 0.47 |

500 | 0.02 | 0.03 | 0.04 | 0.06 | 0.10 | 0.27 |

**Table A7.**Demand factors for the area type “Rural Region: Small-town Area, Village Area” and six charging powers.

Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|

5 | 0.51 | 0.54 | 0.63 | 0.79 | 1.00 | 1.00 |

10 | 0.31 | 0.33 | 0.39 | 0.50 | 0.70 | 1.00 |

50 | 0.10 | 0.11 | 0.14 | 0.20 | 0.31 | 0.73 |

100 | 0.07 | 0.07 | 0.10 | 0.15 | 0.23 | 0.56 |

500 | 0.02 | 0.03 | 0.04 | 0.07 | 0.13 | 0.33 |

## Appendix C

**Figure A7.**Accumulated charging power in kW for 350 kW charging points up to 500 charging points for seven area types.

**Figure A8.**Accumulated charging power in kW for 150 kW charging points up to 500 charging points for seven area types.

**Figure A9.**Accumulated charging power in kW for 50 kW charging points up to 500 charging points for seven area types.

**Figure A10.**Accumulated charging power in kW for 22 kW charging points up to 500 charging points for seven area types.

**Figure A11.**Accumulated charging power in kW for 11 kW charging points up to 500 charging points for seven area types.

**Figure A12.**Accumulated charging power in kW for 3.7 kW charging points up to 500 charging points for seven area types.

## References

- IRENA. Rise of Renewables in Cities: Energy Solutions for the Urban Future. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Oct/IRENA_Renewables_in_cities_2020.pdf (accessed on 1 August 2021).
- Knobloch, F.; Hanssen, S.V.; Lam, A.; Pollitt, H.; Salas, P.; Chewpreecha, U.; Huijbregts, M.A.J.; Mercure, J.-F. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain.
**2020**, 3, 437–447. [Google Scholar] [CrossRef] [PubMed] - Garcia-Valle, R.; Peças Lopes, J.A. (Eds.) Electric Vehicle Integration into Modern Power Networks; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-0133-9. [Google Scholar] [CrossRef]
- Bundesministerium für Wirtschaft und Klimaschutz (BMWK). Zweite Verordnung zur Änderung der Ladesäulen-Verordnung, Referentenentwurf der Bundesregierung. 2020. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/zweite-verordnung-bmwi-zur-aenderung-der-ladesaeulenverordnung.pdf?__blob=publicationFile&v=2 (accessed on 11 June 2022).
- Bundesministerium der Justiz. Verordnung über Technische Mindestanforderungen an den Sicheren und Interoperablen Aufbau und Betrieb von Öffentlich Zugänglichen Ladepunkten für Elektrisch Betriebene Fahrzeuge. 2021. Available online: https://www.gesetze-im-internet.de/lsv/BJNR045700016.html (accessed on 11 June 2022).
- Schlömer, G. Planung von Optimierten Niederspannungsnetzen; Gottfried Wilhelm Leibniz Universität Hannover: Hannover, Germany, 2017; Available online: https://www.repo.uni-hannover.de/handle/123456789/9113 (accessed on 29 July 2021).
- IEC 60050—International Electrotechnical Vocabulary—Details for IEV Number 691-10-05: “Demand Factor”. Available online: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=691-10-05 (accessed on 20 June 2022).
- Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.; Jensen, K. Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics
**2021**, 10, 1910. [Google Scholar] [CrossRef] - Capasso, A.; Grattieri, W.; Lamedica, R.; Prudenzi, A. A bottom-up approach to residential load modeling. IEEE Trans. Power Syst.
**1994**, 9, 957–964. [Google Scholar] [CrossRef] - Paatero, J.V.; Lund, P.D. A model for generating household electricity load profiles. Int. J. Energy Res.
**2006**, 30, 273–290. [Google Scholar] [CrossRef] - Fischer, D.; Härtl, A.; Wille-Haussmann, B. Model for electric load profiles with high time resolution for German households. Energy Build.
**2015**, 92, 170–179. [Google Scholar] [CrossRef] - Tjaden, T.; Bergner, J.; Weniger, J.; Quaschning, V. Representative Electrical Load Profiles of Residential Buildings in Germany with a Temporal Resolution of One Second. 2015. Available online: https://www.researchgate.net/publication/285577915_Representative_electrical_load_profiles_of_residential_buildings_in_Germany_with_a_temporal_resolution_of_one_second#fullTextFileContent (accessed on 20 June 2022).
- Mosquet, X.; Zablit, H.; Dinger, A.; Xu, G.; Andersen, M.; Tominaga, K. The Electric Car Tipping Point—The Future of Powertrains for Owned and Shared Mobility. 2018. Available online: https://web-assets.bcg.com/ef/8b/007df7ab420dab1164e89d0a6584/bcg-the-electric-car-tipping-point-jan-2018.pdf (accessed on 1 July 2021).
- Electric Vehicle Outlook 2018, BloombergNEF, 2018. Available online: https://about.bnef.com/electric-vehicle-outlook/#_toc-download (accessed on 29 July 2021).
- RBC Electric Vehicle Forecast through 2050 & Primer, RBC Capital Markets. 2018. Available online: http://www.fullertreacymoney.com/system/data/files/PDFs/2018/May/14th/RBC%20Capital%20Markets_RBC%20Electric%20Vehicle%20Forecast%20Through%202050%20%20Primer_11May2018.pdf (accessed on 29 July 2021).
- Netze BW GmbH. Die e-Mobility-Allee—Das Stromnetz-Reallabor zur Erforschung des Zukünftigen e-Mobility-Alltags; Netze BW GmbH: Stuttgart, Germany, November 2019; Available online: https://assets.ctfassets.net/xytfb1vrn7of/6gXs8wiRSF0E2SqkwSq406/fc1c9430ba88b81c31e399242b09b17e/20191217_BroschuereE-Mobility_210x275mm_100Ansicht.pdf (accessed on 11 June 2022).
- Forum Netztechnik/Netzbetrieb im VDE (FNN). Ermittlung von Gleichzeitigkeitsfaktoren für Ladevorgänge an Privaten Ladepunkten—Wissenschaftliche Untersuchung zur Gleichzeitigkeit von Ungesteuerten Ladevorgängen von Elektrofahr-Zeugen; VDE-Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Bollerslev, J.; Andersen, P.B.; Jensen, T.V.; Marinelli, M.; Thingvad, A.; Calearo, L.; Weckesser, T. Coincidence Factors for Domestic EV Charging from Driving and Plug-In Behavior. IEEE Trans. Transp. Electrif.
**2022**, 8, 808–819. [Google Scholar] [CrossRef] - Kreutmayr, S.; Storch, D.J.; Niederle, S.; Steinhart, C.J.; Gutzmann, C.; Finkel, M.; Witzmann, R. Time-Dependent and Location-Based Analysis of Power Consumption at Public Charging Stations in Urban Areas. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2386–2390. [Google Scholar] [CrossRef]
- Ali, S.; Wintzek, P.; Zdrallek, M.; Böse, C.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Demand factor identification of electric vehicle charging points for distribution system planning. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2574–2578. [Google Scholar] [CrossRef]
- DIN EN 60076-1:2012-03 VDE 0532-76-1:2012-03; Power Transformers—Part 1: General (IEC 60076-1:2011); German Version EN 60076-1:2011. Beuth Verlag GmbH: Berlin, Germany, 2012.
- DIN EN 50588-1:2019-12; Medium Power Transformers 50 Hz, with Highest Voltage for Equipment Not Exceeding 36 kV—Part 1: General Requirements; German Version EN 50588-1:2017. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN VDE 0276-1000:1995-06; Power Cables; Current-Carrying Capacity, General; Conversion Factors. Beuth Verlag GmbH: Berlin, Germany, 1995.
- DIN EN 50160:2020-11; Voltage Characteristics of Electricity Supplied by Public Electricity Networks; German Version EN 50160:2010 + Cor.:2010 + A1:2015 + A2:2019 + A3:2019. Beuth Verlag GmbH: Berlin, Germany, 2020.
- Wintzek, P.; Ali, S.A.; Riedlinger, T.; Düsterhus, P.; Zdrallek, M. Sensitivity Analysis for Different Calculation Methods of Simultaneity Factors for Charging Infrastructure in Low-Voltage Grids. In Proceedings of the CIRED 2022 Workshop, Porto, Portugal, 2–3 June 2021; p. 0470. [Google Scholar]
- Follmer, R.; Gruschwitz, D.; Jesske, B.; Quandt, S.; Lenz, B.; Nobis, C.; Köhler, K.; Mehlin, M. Mobilität in Deutschland 2008; Ergebnisbericht: Struktur-Aufkommen-Emissionen-Trends; Federal Ministry for Digital and Transport: Bonn, Germany; Berlin, Germany, 2010; Available online: http://www.mobilitaet-in-deutschland.de/pdf/infas_MiD2008_Abschlussbericht_I.pdf (accessed on 24 February 2022).
- Follmer, R. Mobility in Germany: Short Report Transport Volume-Structure-Trends. 2019. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/G/mid-2017-short-report.pdf?__blob=publicationFile (accessed on 11 June 2022).
- Zdrallek, M. Elektromobilität in der Netzplanung—Strategien für Ladeinfrastruktur, Anwendungsfälle und Praxisbeispiele. 2020. Available online: https://www.evt.uni-wuppertal.de/fileadmin/Abteilung/EEV/pdf/aktuelles/Einladungskarte_Web-Seminar_ENP.PDF (accessed on 11 June 2022).
- RegioStaR: Regional Statistical Spatial Typology for Mobility and Transport Research. 2018. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/G/regiostar-raumtypologie-englisch.pdf?__blob=publicationFile (accessed on 11 June 2022).
- Uhlig, R.; Stotzel, M.; Zdrallek, M.; Neusel-Lange, N. Dynamic grid support with EV charging management considering user requirements. In Proceedings of the CIRED Workshop 2016, Institution of Engineering and Technology, Helsinki, Finland, 14–15 June 2016; p. 0071. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Ali, S.A.; Becker, M.; Möller, C.; Zdrallek, M.; Boden, E.; Knoll, C. Impact of different electric vehicle charging models on distribution grid planning. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2396–2400. [Google Scholar] [CrossRef]
- The MathWorks, Inc. List of Library Models for Curve and Surface Fitting. Available online: https://de.mathworks.com/help/curvefit/list-of-library-models-for-curve-and-surface-fitting.html (accessed on 1 June 2022).
- Liu, L. Einfluss der Privaten Elektrofahrzeuge auf Mittel- und Niederspannungsnetze. 2018. Available online: https://tuprints.ulb.tu-darmstadt.de/7171/1/Liu_Diss_2018e.pdf (accessed on 20 June 2022).
- Scrosati, B.; Garche, J.; Tillmetz, W. (Eds.) Advances in Battery Technologies for Electric Vehicles; Woodhead Publishing: Cambridge, UK, 2015; ISBN 978-1-78242-398-0. [Google Scholar]
- Wintzek, P.; Ali, S.A.; Zdrallek, M.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Development of planning and operation guidelines for strategic grid planning of urban low-voltage grids with a new supply task. Electricity
**2021**, 2, 614–652. [Google Scholar] [CrossRef] - IEC 60050—International Electrotechnical Vocabulary—Details for IEV Number 351-45-12: “Operating Point”; International Electrotechnical Commission: London, UK, 2006.

**Figure 1.**Planning perspectives considering the respective demand factor (DF) [25].

**Figure 2.**

**Left**: Probability distribution of the number of routes per day and vehicle.

**Right**: Percentage of the purpose of the daily routes for different weekdays based on [28].

**Figure 3.**

**Left**: Probability distribution of the length of the routes per vehicle according to the purpose of the route.

**Right**: Probability distribution of the time of departure of a vehicle according to the purpose of the route based on data published in [27] for “Urban Region: Metropolis”.

**Figure 4.**Geographical representation of the seven area types (RegioStar 7) in Germany for the research in mobility and transportation sectors [29], with permission from Federal Ministry of Transport and Digital Infrastructure, 2018.

**Figure 5.**Simulation algorithm for generating probabilistic driving and load profiles [28].

**Figure 6.**Exemplary weekly charging profile for an electric vehicle and the accumulated charging profile for ten electric vehicles [28].

**Figure 8.**Process diagram for the simulation of charging profiles for different area types and charging powers.

**Figure 9.**Example of curve fitting (CF) for charging powers between 3.7 kW and 350 kW for (10, 50, 100 and 500) charging points (CP).

**Figure 11.**Demand factors (ordinate) for the area type “Urban Region: Metropolis” and six charging powers.

**Figure 12.**Demand factors (ordinate) for the area type “Urban Region: Regiopolis, Large City” and six charging powers.

**Figure 13.**Demand factors (ordinate) for the area type “Urban Region: Medium-sized City, Urbanised Area” and six charging powers.

**Figure 14.**Demand factors (ordinate) for the area type “Urban Region: Small-town Area, Village Area” and six charging powers.

**Figure 15.**Demand factors (ordinate) for the area type “Rural Region: Central City” and six charging powers.

**Figure 16.**Demand factors (ordinate) for the area type “Rural Region: Medium-sized City, Urbanised Area” and six charging powers.

**Figure 17.**Demand factors (ordinate) for the area type “Rural Region: Small-town Area, Village Area” and six charging powers.

**Figure 24.**Demand factors (ordinate) for 22 kW charging power with seven different area types, six area types according to FNN and the results from PuBStadt for 150 charging points.

**Figure 25.**Demand factors (ordinate) for 11 kW charging power with seven different area types, six area types according to FNN and the results from PuBStadt for 150 charging points.

**Figure 26.**Accumulated charging power (ordinate) for 22 kW charging power with seven different area types, six area types according to FNN and the results from PuBStadt for 150 charging points.

**Figure 27.**Accumulated charging power (ordinate) for 11 kW charging power with seven different area types, six area types according to FNN and the results from PuBStadt for 150 charging points.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ali, S.; Wintzek, P.; Zdrallek, M.
Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types. *Electricity* **2022**, *3*, 410-441.
https://doi.org/10.3390/electricity3030022

**AMA Style**

Ali S, Wintzek P, Zdrallek M.
Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types. *Electricity*. 2022; 3(3):410-441.
https://doi.org/10.3390/electricity3030022

**Chicago/Turabian Style**

Ali, Shawki, Patrick Wintzek, and Markus Zdrallek.
2022. "Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types" *Electricity* 3, no. 3: 410-441.
https://doi.org/10.3390/electricity3030022