Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types
Abstract
:1. Introduction
1.1. Novelty and Significance of Demand Factors
1.2. Structure and Objective of the Work
- 1.
- Analysis of the driving behaviour in terms of:
- Day of the week
- Purpose of the trip
- Number of trips per day
- Distance of the trip
- 2.
- Generation of weekly charging profiles depending on the available charging power and the specified area type
- 3.
- Development of DF curves for:
- Six dominant charging powers: (3.7, 11, 22, 50, 150 and 350) kW
- Seven area types (specified in Section 2)
- 500 CPs
- 4.
- Implementation of a curve-fitting algorithm for charging powers with 1 kW steps starting from 3.7 kW up to 350 kW
2. Database
- Urban Region: Metropolis
- Urban Region: Regiopolis, Large City
- Urban Region: Medium-sized City, Urbanised Area
- Urban Region: Small-town Area, Village Area
- Rural Region: Central City
- Rural Region: Medium-sized City, Urbanised Area
- Rural Region: Small-town Area, Village Area
3. Method
3.1. General Conditions
3.2. Simulation Tool
- Independent of the number of consecutive charging processes for the single CP (e.g., 10 EVs are charging after one another at the same single CP), the maximum power drawn simultaneously from the electric grid equals the nominal power of this single CP. Hence, the DF equals 1 (see Equation (1) in Section 3.3). Naturally, this situation does not apply if several CPs are available, which is the main investigation in the contribution. With the focus on strategic electric grid planning, the question that the contribution aims to answer is not how many EVs can be charged with a limited number of CPs but rather how many CPs are being used at the same time when there is unlimited access to CPs.
- Since the CPs are available at the destinations, the travelling distance to a CP is already included in the applied statistical driving data (Figure 3, Figure A1, Figure A2, Figure A3, Figure A4, Figure A5 and Figure A6) for the different area types. Hence, the travel distance and time of the EV(s) to a CP are modelled by generating the driving profile(s) to a certain destination.
3.3. Generation of Demand Factors
Sub Demand_factor_tool () |
For area type = 1 to 7 |
For charging power = {3.7, 11, 22, 50, 150, 350} |
For number of EVs = 1 to 500 with a step of 10 |
For simulated week = 1 to 5200 |
generate charging profiles for the number of EVs |
overlap generated charging profiles |
If maximum charging profile < charging profile then |
maximum charging profile = charging profile |
End if |
next simulated week |
calculate demand factor |
Next number of EVs |
Next charging power |
Next area type |
4. Results of the Simulation
4.1. Demand Factors According to the Area Types
4.2. Demand Factors According to the Charging Powers
5. Discussion
5.1. Influence of the General Conditions and Evaluation of the Method
5.2. Sensitivity Analysis to Other Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.44 | 0.46 | 0.52 | 0.64 | 0.85 | 1.00 |
10 | 0.27 | 0.28 | 0.33 | 0.41 | 0.57 | 1.00 |
50 | 0.09 | 0.10 | 0.12 | 0.17 | 0.25 | 0.56 |
100 | 0.06 | 0.06 | 0.08 | 0.12 | 0.18 | 0.43 |
500 | 0.02 | 0.02 | 0.03 | 0.05 | 0.09 | 0.23 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.44 | 0.46 | 0.54 | 0.68 | 0.93 | 1.00 |
10 | 0.27 | 0.29 | 0.33 | 0.42 | 0.58 | 1.00 |
50 | 0.09 | 0.10 | 0.12 | 0.16 | 0.24 | 0.54 |
100 | 0.06 | 0.06 | 0.08 | 0.11 | 0.17 | 0.40 |
500 | 0.02 | 0.02 | 0.03 | 0.05 | 0.09 | 0.22 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.45 | 0.48 | 0.56 | 0.71 | 0.98 | 1.00 |
10 | 0.28 | 0.29 | 0.35 | 0.46 | 0.65 | 1.00 |
50 | 0.10 | 0.10 | 0.13 | 0.19 | 0.29 | 0.68 |
100 | 0.06 | 0.07 | 0.09 | 0.13 | 0.21 | 0.51 |
500 | 0.02 | 0.03 | 0.04 | 0.06 | 0.11 | 0.28 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.46 | 0.48 | 0.56 | 0.72 | 0.99 | 1.00 |
10 | 0.29 | 0.31 | 0.36 | 0.46 | 0.65 | 1.00 |
50 | 0.10 | 0.11 | 0.14 | 0.20 | 0.29 | 0.69 |
100 | 0.07 | 0.07 | 0.10 | 0.14 | 0.22 | 0.54 |
500 | 0.02 | 0.03 | 0.04 | 0.07 | 0.12 | 0.33 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.46 | 0.48 | 0.57 | 0.73 | 1.00 | 1.00 |
10 | 0.28 | 0.30 | 0.35 | 0.45 | 0.64 | 1.00 |
50 | 0.09 | 0.10 | 0.13 | 0.18 | 0.26 | 0.61 |
100 | 0.06 | 0.07 | 0.08 | 0.12 | 0.19 | 0.46 |
500 | 0.02 | 0.02 | 0.04 | 0.06 | 0.10 | 0.26 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.45 | 0.48 | 0.57 | 0.76 | 1.00 | 1.00 |
10 | 0.28 | 0.30 | 0.36 | 0.47 | 0.67 | 1.00 |
50 | 0.10 | 0.10 | 0.13 | 0.18 | 0.27 | 0.63 |
100 | 0.06 | 0.07 | 0.09 | 0.13 | 0.20 | 0.47 |
500 | 0.02 | 0.03 | 0.04 | 0.06 | 0.10 | 0.27 |
Charging Points | 350 kW | 150 kW | 50 kW | 22 kW | 11 kW | 3.7 kW |
---|---|---|---|---|---|---|
5 | 0.51 | 0.54 | 0.63 | 0.79 | 1.00 | 1.00 |
10 | 0.31 | 0.33 | 0.39 | 0.50 | 0.70 | 1.00 |
50 | 0.10 | 0.11 | 0.14 | 0.20 | 0.31 | 0.73 |
100 | 0.07 | 0.07 | 0.10 | 0.15 | 0.23 | 0.56 |
500 | 0.02 | 0.03 | 0.04 | 0.07 | 0.13 | 0.33 |
Appendix C
References
- IRENA. Rise of Renewables in Cities: Energy Solutions for the Urban Future. 2020. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Oct/IRENA_Renewables_in_cities_2020.pdf (accessed on 1 August 2021).
- Knobloch, F.; Hanssen, S.V.; Lam, A.; Pollitt, H.; Salas, P.; Chewpreecha, U.; Huijbregts, M.A.J.; Mercure, J.-F. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 2020, 3, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Valle, R.; Peças Lopes, J.A. (Eds.) Electric Vehicle Integration into Modern Power Networks; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-0133-9. [Google Scholar] [CrossRef]
- Bundesministerium für Wirtschaft und Klimaschutz (BMWK). Zweite Verordnung zur Änderung der Ladesäulen-Verordnung, Referentenentwurf der Bundesregierung. 2020. Available online: https://www.bmwk.de/Redaktion/DE/Publikationen/Energie/zweite-verordnung-bmwi-zur-aenderung-der-ladesaeulenverordnung.pdf?__blob=publicationFile&v=2 (accessed on 11 June 2022).
- Bundesministerium der Justiz. Verordnung über Technische Mindestanforderungen an den Sicheren und Interoperablen Aufbau und Betrieb von Öffentlich Zugänglichen Ladepunkten für Elektrisch Betriebene Fahrzeuge. 2021. Available online: https://www.gesetze-im-internet.de/lsv/BJNR045700016.html (accessed on 11 June 2022).
- Schlömer, G. Planung von Optimierten Niederspannungsnetzen; Gottfried Wilhelm Leibniz Universität Hannover: Hannover, Germany, 2017; Available online: https://www.repo.uni-hannover.de/handle/123456789/9113 (accessed on 29 July 2021).
- IEC 60050—International Electrotechnical Vocabulary—Details for IEV Number 691-10-05: “Demand Factor”. Available online: https://www.electropedia.org/iev/iev.nsf/display?openform&ievref=691-10-05 (accessed on 20 June 2022).
- Arif, S.M.; Lie, T.T.; Seet, B.C.; Ayyadi, S.; Jensen, K. Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques. Electronics 2021, 10, 1910. [Google Scholar] [CrossRef]
- Capasso, A.; Grattieri, W.; Lamedica, R.; Prudenzi, A. A bottom-up approach to residential load modeling. IEEE Trans. Power Syst. 1994, 9, 957–964. [Google Scholar] [CrossRef]
- Paatero, J.V.; Lund, P.D. A model for generating household electricity load profiles. Int. J. Energy Res. 2006, 30, 273–290. [Google Scholar] [CrossRef]
- Fischer, D.; Härtl, A.; Wille-Haussmann, B. Model for electric load profiles with high time resolution for German households. Energy Build. 2015, 92, 170–179. [Google Scholar] [CrossRef]
- Tjaden, T.; Bergner, J.; Weniger, J.; Quaschning, V. Representative Electrical Load Profiles of Residential Buildings in Germany with a Temporal Resolution of One Second. 2015. Available online: https://www.researchgate.net/publication/285577915_Representative_electrical_load_profiles_of_residential_buildings_in_Germany_with_a_temporal_resolution_of_one_second#fullTextFileContent (accessed on 20 June 2022).
- Mosquet, X.; Zablit, H.; Dinger, A.; Xu, G.; Andersen, M.; Tominaga, K. The Electric Car Tipping Point—The Future of Powertrains for Owned and Shared Mobility. 2018. Available online: https://web-assets.bcg.com/ef/8b/007df7ab420dab1164e89d0a6584/bcg-the-electric-car-tipping-point-jan-2018.pdf (accessed on 1 July 2021).
- Electric Vehicle Outlook 2018, BloombergNEF, 2018. Available online: https://about.bnef.com/electric-vehicle-outlook/#_toc-download (accessed on 29 July 2021).
- RBC Electric Vehicle Forecast through 2050 & Primer, RBC Capital Markets. 2018. Available online: http://www.fullertreacymoney.com/system/data/files/PDFs/2018/May/14th/RBC%20Capital%20Markets_RBC%20Electric%20Vehicle%20Forecast%20Through%202050%20%20Primer_11May2018.pdf (accessed on 29 July 2021).
- Netze BW GmbH. Die e-Mobility-Allee—Das Stromnetz-Reallabor zur Erforschung des Zukünftigen e-Mobility-Alltags; Netze BW GmbH: Stuttgart, Germany, November 2019; Available online: https://assets.ctfassets.net/xytfb1vrn7of/6gXs8wiRSF0E2SqkwSq406/fc1c9430ba88b81c31e399242b09b17e/20191217_BroschuereE-Mobility_210x275mm_100Ansicht.pdf (accessed on 11 June 2022).
- Forum Netztechnik/Netzbetrieb im VDE (FNN). Ermittlung von Gleichzeitigkeitsfaktoren für Ladevorgänge an Privaten Ladepunkten—Wissenschaftliche Untersuchung zur Gleichzeitigkeit von Ungesteuerten Ladevorgängen von Elektrofahr-Zeugen; VDE-Verlag GmbH: Berlin, Germany, 2021. [Google Scholar]
- Bollerslev, J.; Andersen, P.B.; Jensen, T.V.; Marinelli, M.; Thingvad, A.; Calearo, L.; Weckesser, T. Coincidence Factors for Domestic EV Charging from Driving and Plug-In Behavior. IEEE Trans. Transp. Electrif. 2022, 8, 808–819. [Google Scholar] [CrossRef]
- Kreutmayr, S.; Storch, D.J.; Niederle, S.; Steinhart, C.J.; Gutzmann, C.; Finkel, M.; Witzmann, R. Time-Dependent and Location-Based Analysis of Power Consumption at Public Charging Stations in Urban Areas. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2386–2390. [Google Scholar] [CrossRef]
- Ali, S.; Wintzek, P.; Zdrallek, M.; Böse, C.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Demand factor identification of electric vehicle charging points for distribution system planning. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2574–2578. [Google Scholar] [CrossRef]
- DIN EN 60076-1:2012-03 VDE 0532-76-1:2012-03; Power Transformers—Part 1: General (IEC 60076-1:2011); German Version EN 60076-1:2011. Beuth Verlag GmbH: Berlin, Germany, 2012.
- DIN EN 50588-1:2019-12; Medium Power Transformers 50 Hz, with Highest Voltage for Equipment Not Exceeding 36 kV—Part 1: General Requirements; German Version EN 50588-1:2017. Beuth Verlag GmbH: Berlin, Germany, 2019.
- DIN VDE 0276-1000:1995-06; Power Cables; Current-Carrying Capacity, General; Conversion Factors. Beuth Verlag GmbH: Berlin, Germany, 1995.
- DIN EN 50160:2020-11; Voltage Characteristics of Electricity Supplied by Public Electricity Networks; German Version EN 50160:2010 + Cor.:2010 + A1:2015 + A2:2019 + A3:2019. Beuth Verlag GmbH: Berlin, Germany, 2020.
- Wintzek, P.; Ali, S.A.; Riedlinger, T.; Düsterhus, P.; Zdrallek, M. Sensitivity Analysis for Different Calculation Methods of Simultaneity Factors for Charging Infrastructure in Low-Voltage Grids. In Proceedings of the CIRED 2022 Workshop, Porto, Portugal, 2–3 June 2021; p. 0470. [Google Scholar]
- Follmer, R.; Gruschwitz, D.; Jesske, B.; Quandt, S.; Lenz, B.; Nobis, C.; Köhler, K.; Mehlin, M. Mobilität in Deutschland 2008; Ergebnisbericht: Struktur-Aufkommen-Emissionen-Trends; Federal Ministry for Digital and Transport: Bonn, Germany; Berlin, Germany, 2010; Available online: http://www.mobilitaet-in-deutschland.de/pdf/infas_MiD2008_Abschlussbericht_I.pdf (accessed on 24 February 2022).
- Follmer, R. Mobility in Germany: Short Report Transport Volume-Structure-Trends. 2019. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/G/mid-2017-short-report.pdf?__blob=publicationFile (accessed on 11 June 2022).
- Zdrallek, M. Elektromobilität in der Netzplanung—Strategien für Ladeinfrastruktur, Anwendungsfälle und Praxisbeispiele. 2020. Available online: https://www.evt.uni-wuppertal.de/fileadmin/Abteilung/EEV/pdf/aktuelles/Einladungskarte_Web-Seminar_ENP.PDF (accessed on 11 June 2022).
- RegioStaR: Regional Statistical Spatial Typology for Mobility and Transport Research. 2018. Available online: https://www.bmvi.de/SharedDocs/DE/Anlage/G/regiostar-raumtypologie-englisch.pdf?__blob=publicationFile (accessed on 11 June 2022).
- Uhlig, R.; Stotzel, M.; Zdrallek, M.; Neusel-Lange, N. Dynamic grid support with EV charging management considering user requirements. In Proceedings of the CIRED Workshop 2016, Institution of Engineering and Technology, Helsinki, Finland, 14–15 June 2016; p. 0071. [Google Scholar] [CrossRef] [Green Version]
- Müller, T.; Ali, S.A.; Becker, M.; Möller, C.; Zdrallek, M.; Boden, E.; Knoll, C. Impact of different electric vehicle charging models on distribution grid planning. In Proceedings of the CIRED 2021—The 26th International Conference and Exhibition on Electricity Distribution, Institution of Engineering and Technology, Online Conference, 20–23 September 2021; pp. 2396–2400. [Google Scholar] [CrossRef]
- The MathWorks, Inc. List of Library Models for Curve and Surface Fitting. Available online: https://de.mathworks.com/help/curvefit/list-of-library-models-for-curve-and-surface-fitting.html (accessed on 1 June 2022).
- Liu, L. Einfluss der Privaten Elektrofahrzeuge auf Mittel- und Niederspannungsnetze. 2018. Available online: https://tuprints.ulb.tu-darmstadt.de/7171/1/Liu_Diss_2018e.pdf (accessed on 20 June 2022).
- Scrosati, B.; Garche, J.; Tillmetz, W. (Eds.) Advances in Battery Technologies for Electric Vehicles; Woodhead Publishing: Cambridge, UK, 2015; ISBN 978-1-78242-398-0. [Google Scholar]
- Wintzek, P.; Ali, S.A.; Zdrallek, M.; Monscheidt, J.; Gemsjäger, B.; Slupinski, A. Development of planning and operation guidelines for strategic grid planning of urban low-voltage grids with a new supply task. Electricity 2021, 2, 614–652. [Google Scholar] [CrossRef]
- IEC 60050—International Electrotechnical Vocabulary—Details for IEV Number 351-45-12: “Operating Point”; International Electrotechnical Commission: London, UK, 2006.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, S.; Wintzek, P.; Zdrallek, M. Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types. Electricity 2022, 3, 410-441. https://doi.org/10.3390/electricity3030022
Ali S, Wintzek P, Zdrallek M. Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types. Electricity. 2022; 3(3):410-441. https://doi.org/10.3390/electricity3030022
Chicago/Turabian StyleAli, Shawki, Patrick Wintzek, and Markus Zdrallek. 2022. "Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types" Electricity 3, no. 3: 410-441. https://doi.org/10.3390/electricity3030022
APA StyleAli, S., Wintzek, P., & Zdrallek, M. (2022). Development of Demand Factors for Electric Car Charging Points for Varying Charging Powers and Area Types. Electricity, 3(3), 410-441. https://doi.org/10.3390/electricity3030022