Comparison of Optoelectronic Properties of Doped and Pristine Nanotubes Based on Carbon and Tungsten Disulfide †
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O.V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033. [Google Scholar] [CrossRef]
- Wang, G.; Chernikov, A.; Glazov, M.M.; Heinz, T.F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in Atomically Thin Transition Metal Dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001. [Google Scholar] [CrossRef]
- Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.L.; Aslan, O.B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802. [Google Scholar] [CrossRef]
- Guo, J.; Xiang, R.; Cheng, T.; Maruyama, S.; Li, Y. One-Dimensional van der Waals Heterostructures: A Perspective. ACS Nanosci. 2022, 2, 3–11. [Google Scholar] [CrossRef]
- Sinha, S.S.; Yadgarov, L.; Aliev, S.B.; Feldman, Y.; Pinkas, I.; Chithaiah, P.; Ghosh, S.; Idelevich, A.; Zak, A.; Tenne, R. MoS2 and WS2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. J. Phys. Chem. C 2021, 125, 6324–6340. [Google Scholar]
- Polyakov, A.Y.; Yadgarov, L.; Popovitz-Biro, R.; Lebedev, V.A.; Pinkas, I.; Rosentsveig, R.; Feldman, Y.; Goldt, A.E.; Goodilin, E.A.; Tenne, R. Decoration of WS2 Nanotubes and Fullerene-Like MoS2 with Gold Nanoparticles. J. Phys. Chem. C 2014, 118, 2161–2169. [Google Scholar] [CrossRef]
- Nasibulin, A.G.; Moisala, A.; Brown, D.P.; Jiang, H.; Kauppinen, E.I. A Novel Aerosol Method for Single Walled Carbon Nanotube Synthesis. Chem. Phys. Lett. 2005, 402, 227–232. [Google Scholar] [CrossRef]
- Burdanova, M.G.; Tsapenko, A.P.; Kharlamova, M.V.; Kauppinen, E.I.; Gorshunov, B.P.; Kono, J.; Lloyd-Hughes, J. A Review of the Terahertz Conductivity and Photoconductivity of Carbon Nanotubes and Heteronanotubes. Adv. Opt. Mater. 2021, 9, 2101042. [Google Scholar] [CrossRef]
Sample | Diameter (nm) | Length (μm) |
---|---|---|
CNT | 1.8 | >10 |
WS2NT | 79.8 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paukov, M.I.; Goldt, A.E.; Komandin, G.A.; Syuy, A.V.; Yakubovskiy, D.I.; Novikov, S.; Tenne, R.; Zak, A.; Nasibulin, A.G.; Arsenin, A.V.; et al. Comparison of Optoelectronic Properties of Doped and Pristine Nanotubes Based on Carbon and Tungsten Disulfide. Mater. Proc. 2022, 9, 28. https://doi.org/10.3390/materproc2022009028
Paukov MI, Goldt AE, Komandin GA, Syuy AV, Yakubovskiy DI, Novikov S, Tenne R, Zak A, Nasibulin AG, Arsenin AV, et al. Comparison of Optoelectronic Properties of Doped and Pristine Nanotubes Based on Carbon and Tungsten Disulfide. Materials Proceedings. 2022; 9(1):28. https://doi.org/10.3390/materproc2022009028
Chicago/Turabian StylePaukov, Maxim I., Anastasia E. Goldt, Gennadiy A. Komandin, Alexander V. Syuy, Dmitry I. Yakubovskiy, Sergei Novikov, Reshef Tenne, Alla Zak, Albert G. Nasibulin, Alexey V. Arsenin, and et al. 2022. "Comparison of Optoelectronic Properties of Doped and Pristine Nanotubes Based on Carbon and Tungsten Disulfide" Materials Proceedings 9, no. 1: 28. https://doi.org/10.3390/materproc2022009028
APA StylePaukov, M. I., Goldt, A. E., Komandin, G. A., Syuy, A. V., Yakubovskiy, D. I., Novikov, S., Tenne, R., Zak, A., Nasibulin, A. G., Arsenin, A. V., Volkov, V., & Burdanova, M. G. (2022). Comparison of Optoelectronic Properties of Doped and Pristine Nanotubes Based on Carbon and Tungsten Disulfide. Materials Proceedings, 9(1), 28. https://doi.org/10.3390/materproc2022009028