Lipid-Based Nanosystems to Carry Manganese Derivatives for Diagnostic Purpose †
Abstract
:1. Introduction
2. Methods
2.1. Production of Liposomes
2.2. Liposomes Characterization
2.3. Encapsulation Efficiency of Manganese
2.4. Cell Viability Test
3. Results and Discussion
3.1. Liposomes Preparation and Characterization
3.2. In Vitro Effect on HaCaT Cultured Cells
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ta, T.; Porter, T.M. Thermosensitive Liposomes for Localized Delivery and Triggered Release of Chemotherapy. J. Control. Release 2013, 169, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Brandt, M.; Cardinale, J.; Rausch, I.; Mindt, T.L. Manganese in PET Imaging: Opportunities and Challenges. J. Label. Compd. Radiopharm. 2019, 62, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Aiello, M.; Cavaliere, C.; Marchitelli, R.; d’Albore, A.; De Vita, E.; Salvatore, M. Hybrid PET/MRI Methodology. Int. Rev. Neurobiol. 2018, 141, 97–128. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, R.; Romagnoli, R.; Drechsler, M.; Menegatti, E.; Zaid, A.N.; Ravani, L.; Esposito, E. Liposomes- and Ethosomes-Associated Distamycins: A Comparative Study. J. Liposome Res. 2010, 20, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Mariani, P.; Ravani, L.; Contado, C.; Volta, M.; Bido, S.; Drechsler, M.; Mazzoni, S.; Menegatti, E.; Morari, M.; et al. Nanoparticulate Lipid Dispersions for Bromocriptine Delivery: Characterization and in Vivo Study. Eur. J. Pharm. Biopharm. 2012, 80, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Pecora, R. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. J. Nanopart. Res. 2000, 2, 123–131. [Google Scholar] [CrossRef]
- Singh Hallan, S.; Sguizzato, M.; Pavoni, G.; Baldisserotto, A.; Drechsler, M.; Mariani, P.; Esposito, E.; Cortesi, R. Ellagic Acid Containing Nanostructured Lipid Carriers for Topical Application: A Preliminary Study. Molecules 2020, 25, 1449. [Google Scholar] [CrossRef] [PubMed]
- El-Hammadi, M.M.; Arias, J.L. An Update on Liposomes in Drug Delivery: A Patent Review (2014–2018). Expert Opin. Ther. Pat. 2019, 29, 891–907. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.R.; Imran, M.; Ullah, S. Liposomes. In Lipid-Based Nanocarriers for Drug Delivery and Diagnosis; Elsevier: Amsterdam, The Netherlands, 2017; pp. 63–110. ISBN 978-0-323-52729-3. [Google Scholar]
- Sguizzato, M.; Pula, W.; Bordin, A.; Pagnoni, A.; Drechsler, M.; Marvelli, L.; Cortesi, R. Manganese in Diagnostics: A Preformulatory Study. Pharmaceutics 2022, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Has, C.; Pan, S. Vesicle Formation Mechanisms: An Overview. J. Liposome Res. 2021, 31, 90–111. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.B.; Betageri, G.V.; Singh, M. Factors Affecting Microencapsulation of Drugs in Liposomes. J. Microencapsul. 1995, 12, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
Liposome Dispersion | Mean Size (nm ± s.d.) | PdI ± s.d. | ζ Potential (mV) |
---|---|---|---|
plain SLL | 183.20 ± 1.01 | 0.08 ± 0.01 | −57.12 ± 0.64 |
SLL-MnH | 192.51 ± 4.13 | 0.13 ± 0.02 | −51.72 ± 1.37 |
SLL-MnL | 193.33 ± 1.54 | 0.12 ± 0.03 | −54.61 ± 0.90 |
plain NLS | 171.22 ± 0.98 | 0.09 ± 0.01 | −57.77 ± 1.26 |
NLS-MnH | 172.91 ± 3.81 | 0.12 ± 0.02 | −48.02 ± 0.70 |
NLS-MnL | 176.82 ± 4.91 | 0.09 ± 0.02 | −59.75 ± 0.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sguizzato, M.; Pula, W.; Drechsler, M.; Marvelli, L.; Cortesi, R. Lipid-Based Nanosystems to Carry Manganese Derivatives for Diagnostic Purpose. Mater. Proc. 2022, 9, 25. https://doi.org/10.3390/materproc2022009025
Sguizzato M, Pula W, Drechsler M, Marvelli L, Cortesi R. Lipid-Based Nanosystems to Carry Manganese Derivatives for Diagnostic Purpose. Materials Proceedings. 2022; 9(1):25. https://doi.org/10.3390/materproc2022009025
Chicago/Turabian StyleSguizzato, Maddalena, Walter Pula, Markus Drechsler, Lorenza Marvelli, and Rita Cortesi. 2022. "Lipid-Based Nanosystems to Carry Manganese Derivatives for Diagnostic Purpose" Materials Proceedings 9, no. 1: 25. https://doi.org/10.3390/materproc2022009025
APA StyleSguizzato, M., Pula, W., Drechsler, M., Marvelli, L., & Cortesi, R. (2022). Lipid-Based Nanosystems to Carry Manganese Derivatives for Diagnostic Purpose. Materials Proceedings, 9(1), 25. https://doi.org/10.3390/materproc2022009025