Granulometric, Chemical, and Mineralogical Evaluation of Greek Lignite Bottom Ash for Potential Utilization in Concrete Manufacturing †
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Granulometry and Morphology
3.2. Chemical Composition
3.3. Mineralogical Composition
4. Conclusions
- The particle-size distribution of all the studied bottom ashes satisfies the gradation criteria for utilization in concrete and geotechnical applications.
- Based on the chemical analysis, the bottom ashes from the Agios Dimitrios and Kardia power plants are classified as CaO-rich. The Meliti bottom ashes span from CaO-rich to the SiO2-rich, while the Megalopolis bottom ashes are very rich in SiO2, poorer in CaO, and moderate in Al2O3 content.
- All ashes were found to be Class C pozzolanic materials, as per ASTM C618-05. The high amounts of silica and alumina contents, apparently in a glassy/amorphous state, are indicative for pozzolanic properties, while the high calcium contents suggest hydraulic/self-cementing properties.
- The mineralogical composition of the ashes of all power plants was relatively similar. All bottom ashes have been found to contain mineral phases with hydraulic and pozzolanic, as well as inert, behavior. The DIM and MLT bottom ashes contain minerals with more hydraulic character than the KAR and MGL bottom ashes.
- The presence of glassy/amorphous aluminosilicate phases in the components of the bottom ash samples, along with their calcareous nature, suggested a possible utilization in concrete and other geotechnical applications, considering specific limitations. Careful processing of the bottom ash could provide material that satisfies specific geotechnical needs.
- It is recommended for future works to carry out further research on the determination of workability and hardened properties (like compressive, tensile, and flexural strength), as well as on the strength and durability performances of concrete containing ground bottom ash as a cementitious material under aggressive environment such as those exposed to sulphate and chloride conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Dedication
References
- Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24. [Google Scholar] [CrossRef]
- Baig, A.; Varghese, V.P. Coal Bottom Ash as a Concrete Ingredient: Review (April 11, 2019). In Proceedings of the Sustainable Infrastructure Development & Management (SIDM) 2019, Nagpur, India, 22–23 February 2019. [Google Scholar]
- Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Abdul Patah, M.F.; Ibrahim, M.R.; Karim, M.R. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability 2021, 13, 8031. [Google Scholar] [CrossRef]
- Nayak, D.K.; Abhilash, P.P.; Singh, R.; Kumar, R.; Kumar, V. Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies. Clean. Mater. 2022, 6, 100143. [Google Scholar] [CrossRef]
- Iordanidis, A.; Asvesta, A.; Kapageridis, I.; Vasileiadou, A.; Koios, K.; Oikonomidis, S.; Kantiranis, N. Characterization of the coarse fraction of lignite bottom ash samples from Greece. In Proceedings of the 5th EurAsia Waste Management Symposium, EWMS, Istanbul, Turkey, 26–28 October 2020; p. 5. [Google Scholar]
- Singh, N.; Mithulraj, M.; Arya, S. Influence of Coal Bottom Ash as Fine Aggregates Replacement on Various Properties of Concretes: A Review. Resour. Conserv. Recycl. 2018, 138, 257–271. [Google Scholar] [CrossRef]
- Muthusamy, K.; Rasid, M.H.; Jokhio, G.A.; Budiea, A.M.A.; Hussin, M.W.; Mirza, J. Coal Bottom Ash as Sand Replacement in Concrete: A review. Constr. Build. Mater. 2020, 236, 117507. [Google Scholar] [CrossRef]
- Ankur, N.; Singh, N. Performance of cement mortars and concretes containing coal bottom ash: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 149, 111361. [Google Scholar] [CrossRef]
- Mangi, S.A.; Wan Ibrahim, M.H.; Jamaluddin, N.; Arshad, M.F.; Mudjanarko, S.W. Recycling of Coal Ash in Concrete as a Partial Cementitious Resource. Resources 2019, 8, 99. [Google Scholar] [CrossRef]
- Mangi, S.A.; Wan Ibrahim, M.H.; Jamaluddin, N.; Arshad, M.F.; Ramadhansyah, P.J. Effects of Ground Coal Bottom Ash on the Properties of Concrete. J. Eng. Sci. Technol. 2019, 14, 338–350. [Google Scholar]
- Hamada, H.; Alatta, A.; Tayeh, B.; Yahaya, F.; Adesina, A. Sustainable application of coal bottom ash as fine aggregates in concrete: A comprehensive review. Case Stud. Constr. Mater. 2022, 16, e01109. [Google Scholar] [CrossRef]
- Mir, B.A.; Saba, A. Evaluation of Load-Settlement Behaviour of Square Model Footings Resting on Geogrid Reinforced Granular Soils. In Proceedings of the 2nd GeoMEast, Cairo, Egypt, 24–28 November 2018; pp. 103–126. [Google Scholar]
- ASTM D 2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society for Testing and Materials, ASTM International: West Conshohocken, PA, USA, 1993.
- Singh, N.; Mithulraj, M.; Arya, S. Utilization of Coal Bottom Ash in Recycled Concrete Aggregates Based Self Compacting Concrete Blended with Metakaolin. Resour. Conserv. Recycl. 2019, 144, 240–251. [Google Scholar] [CrossRef]
- Pant, A.; Ramana, G.V.; Datta, M.; Gupta, S.K. Coal Combustion Residue as Structural Fill Material for Reinforced Soil Structures. J. Clean. Prod. 2019, 232, 417–426. [Google Scholar] [CrossRef]
- Iordanidis, A.; Asvesta, A.; Kapageridis, I.; Vasileiadou, A.; Koios, K.; Oikonomidis, S.; Kantiranis, N.; Evagelopoulos, V. Temporal variation in the compositional and thermal characteristics of Greek lignite bottom ash samples. Solid Fuel Chem. 2020, 54, 427–435. [Google Scholar] [CrossRef]
- Iordanidis, A.; Asvesta, A.; Kapageridis, I.; Vasileiadou, A.; Koios, K.; Oikonomidis, S.; Kantiranis, N. A comprehensive analytical characterization of Greek lignite bottom ash samples. Therm. Sci. 2021, 25, 1879–1889. [Google Scholar] [CrossRef]
- Argiz, C.; Sanjuán, M.Á.; Menéndez, E. Coal Bottom Ash for Portland Cement Production. Adv. Mater. Sci. Eng. 2017, 2017, 6068286. [Google Scholar] [CrossRef]
- Kostakis, G. Characterization of the fly ashes from the lignite burning power plants of northern Greece based on their quantitative mineralogical composition. J. Hazard. Mater. 2009, 166, 972–977. [Google Scholar] [CrossRef] [PubMed]
- ASTM C618-05; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. American Society for Testing and Materials, ASTM International: West Conshohocken, PA, USA, 2005.
- Singh, N.; Bhardwaj, A. Reviewing the role of coal bottom ash as an alternative of cement. Constr. Build. Mater. 2020, 233, 117276. [Google Scholar] [CrossRef]
- Kantiranis, N.; Georgakopoulos, A.; Filippidis, A.; Drakoulis, A. Mineralogy and organic matter content of bottom ash samples from Agios Dimitrios power plant, Greece. Bull. Geol. Soc. Greece 2004, 36, 320–326. [Google Scholar] [CrossRef]
- Iordanidis, A.; Georgakopoulos, A.; Markova, K.; Filippidis, A.; Kassoli-Fournaraki, A. Application of TG–DTA to the study of Amynteon lignites, northern Greece. Thermochim. Acta 2001, 371, 137. [Google Scholar] [CrossRef]
Bottom Ash Sample | Effective Size D10 (mm) | D30 (mm) | Average Size D50 (mm) | D60 (mm) | Uniformity Coefficient Cu = D60/D10 | Curvature Coefficient Cc = D230/(D60*D10) |
---|---|---|---|---|---|---|
MGL | 0.10 | 0.22 | 0.33 | 0.40 | 4.00 | 1.21 |
KAR | 0.15 | 0.28 | 0.46 | 0.62 | 4.13 | 0.84 |
DIM | 0.11 | 0.25 | 0.37 | 0.46 | 4.18 | 1.24 |
MLT | 0.34 | 1.25 | 2.25 | 2.70 | 7.94 | 1.70 |
DIM (16 Samples) | KAR (4 Samples) | MLT (4 Samples) | MGL (4 Samples) | OPC | |
---|---|---|---|---|---|
SiO2 | 23.59–48.68 | 27.03–37.49 | 27.58–46.43 | 32.44–45.30 | 17–25 |
Al2O3 | 10.56–20.00 | 10.97–17.39 | 12.91–22.36 | 11.94–18.13 | 3–8 |
Fe2O3 | 2.25–8.70 1 | 4.74–6.41 | 3.63–8.41 4 | 6.91–12.61 | 0.5–6 |
CaO | 15.94–48.17 | 27.18–41.79 | 12.70–39.24 | 15.73–20.32 | 60–67 |
MgO | 3.07–6.01 | 3.29–5.86 | 2.98–4.62 | 2.61–4.11 | 0.1–4 |
Na2O | 1.73 2 | - | - | - | 0.5–1.3 |
K2O | 0.73–2.72 3 | 1.04–2.55 2 | 0.49–2.22 2 | 1.08–2.63 | |
TiO2 | - | - | 2.32 5 | 1.03–1.54 2 | |
SO3 | 2.65–20.07 | 5.30–9.13 | 5.94–16.13 | 3.67–21.33 | 1–3 |
Mineral Phases | DIM (16) | KAR (4) | MLT (4) | MGL (4) | |
---|---|---|---|---|---|
C. Pozzolanic behaviour | Amorphous | 27–46 | 26–35 | 33–43 | 27–38 |
B. Inert behaviour | Quartz, SiO2 | 10–34 | 14–34 | 11–23 | 21–39 |
Calcite, CaCO3 | 9–60 | 19–34 | 14–20 | 5–27 | |
Plagioclase anorthite, CaAl2Si2O8 | 2–9 1 | 4–15 | 5–16 | 2–9 | |
Mica muscovite, KAl3Si3O10(OH,F)2 | 1–4 2 | 1–2 4 | 1 6 | 1–3 4 | |
K-feldspar, (K,Na,Ca)AlSi3O8 | 2 6 | 8 6 | 6 6 | - | |
Pyroxene (Augite), (Ca,Na)(Mg,Fe,Al,Ti)(Si,Al)2O6 | - | 8 6 | 8 6 | 6–8 4 | |
Hematite, Fe2O3 | 3–4 5 | 4 6 | 6 6 | 9 6 | |
Magnetite, Fe3O4 | 3 6 | - | - | - | |
Maghemite, γ-Fe2O3 | - | - | - | 13 5 | |
Moganite, SiO2 | 6 6 | - | - | - | |
Cristobalite, SiO2 | 1 6 | - | - | - | |
A. Hydraulic behaviour | Gehlenite, Ca2Al2SiO7 | 1–11 2 | 5–8 4 | 4–6 4 | 7–8 5 |
Portlandite, Ca(OH)2 | 4–18 4 | 2 6 | 11–14 4 | - | |
Gypsum, CaSO4 ⋅ 2H2O | 5–10 3 | - | - | - | |
Anhydrite, CaSO4 | 3–27 4 | - | - | - | |
Larnite, Ca2SiO4 | 2–3 5 | - | - | - | |
Lime, CaO | 2–6 5 | - | - | - | |
Dolomite, CaMg(CO3)2 | - | 3 6 | - | - | |
Ettringite, Ca6Al2(SO4)3(OH)12⋯26H2O | 1 6 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asvesta, A.; Kapageridis, I.; Vasileiadou, A.; Koios, K.; Kantiranis, N. Granulometric, Chemical, and Mineralogical Evaluation of Greek Lignite Bottom Ash for Potential Utilization in Concrete Manufacturing. Mater. Proc. 2023, 15, 50. https://doi.org/10.3390/materproc2023015050
Asvesta A, Kapageridis I, Vasileiadou A, Koios K, Kantiranis N. Granulometric, Chemical, and Mineralogical Evaluation of Greek Lignite Bottom Ash for Potential Utilization in Concrete Manufacturing. Materials Proceedings. 2023; 15(1):50. https://doi.org/10.3390/materproc2023015050
Chicago/Turabian StyleAsvesta, Argyro, Ioannis Kapageridis, Agapi Vasileiadou, Kyros Koios, and Nikolaos Kantiranis. 2023. "Granulometric, Chemical, and Mineralogical Evaluation of Greek Lignite Bottom Ash for Potential Utilization in Concrete Manufacturing" Materials Proceedings 15, no. 1: 50. https://doi.org/10.3390/materproc2023015050
APA StyleAsvesta, A., Kapageridis, I., Vasileiadou, A., Koios, K., & Kantiranis, N. (2023). Granulometric, Chemical, and Mineralogical Evaluation of Greek Lignite Bottom Ash for Potential Utilization in Concrete Manufacturing. Materials Proceedings, 15(1), 50. https://doi.org/10.3390/materproc2023015050