Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS) †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the LCA Methodology and Scenario Analysis
2.2. Description of the Carbonated Slag Production System
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gale, J.; Bradshaw, J.; Chen, Z.; Garg, A.; Gomez, D.; Rogner, H.H.; Simbeck, D.; Williams, R. Sources of CO2. In IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- World Steel Association. 2022 World Steel in Figures; World Steel Association: Brussels, Belgium, 2022. [Google Scholar]
- Woodall, C.M.; McQueen, N.; Pilorgé, H.; Wilcox, J. Utilization of Mineral Carbonation Products: Current State and Potential. Greenh. Gases Sci. Technol. 2019, 9, 1096–1113. [Google Scholar] [CrossRef]
- Liu, W.; Teng, L.; Rohani, S. CO2 Mineral Carbonation Using Industrial Solid Wastes: A Review of Recent Developments. Chem. Eng. J. 2021, 416, 129093. [Google Scholar] [CrossRef]
- Ragipani, R.; Bhattacharya, S.; Suresh, A.K. A Review on Steel Slag Valorisation: Via Mineral Carbonation. React. Chem. Eng. 2021, 6, 1152–1178. [Google Scholar] [CrossRef]
- Renforth, P. The negative emission potential of alkaline materials. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chauvy, R.; De Weireld, G. CO2 Utilization Technologies in Europe: A Short Review. Energy Technol. 2020, 8, 2000627. [Google Scholar] [CrossRef]
- Hartmann, J.; West, A.J.; Renforth, P. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 2013, 51, 113–149. [Google Scholar] [CrossRef]
- Müller, L.J.; Kätelhön, A.; Bachmann, M.; Zimmermann, A.; Sternberg, A.; Bardow, A. A Guideline for Life Cycle Assessment of Carbon Capture and Utilization. Front Energy Res. 2020, 8, 1–20. [Google Scholar] [CrossRef]
- Gavankar, S.; Suh, S.; Keller, A.A. The Role of Scale and Technology Maturity in Life Cycle Assessment of Emerging Technologies: A Case Study on Carbon Nanotubes. J. Ind. Ecol. 2015, 19, 51–60. [Google Scholar] [CrossRef]
Input | Amount | Unit |
---|---|---|
Grinded AOD slags | 1 | kg |
BE: electricity grid mix | 0.0903 | kWh |
Tap water | 0.140 | Kg |
Carbon dioxide | 0.0835 | kg |
Output | Amount | Unit |
Carbonated AOD slags | 0.5 | kg |
Midpoint Environmental Impact Categories | Carbonation of AOD Slags | Carbonation of AOD Slags with Flue Gases |
---|---|---|
Climate change, default, incl. biogenic carbon (kg CO2 eq.) | ||
Fine particulate matter formation (kg PM2.5 eq.) | ||
Fossil depletion (kg oil eq.) | ||
Freshwater consumption (m3) | ||
Freshwater ecotoxicity (kg 1.4 DB eq.) | ||
Freshwater eutrophication (kg P eq.) | ||
Human toxicity, cancer (kg 1.4-DB eq.) | ||
Human toxicity, non-cancer (kg 1.4-DB eq.) | ||
Ionizing radiation (kBq Co-60 eq. to air) | ||
Land use (annual crop eq.·y) | ||
Marine ecotoxicity (kg 1.4-DB eq.) | ||
Marine Eutrophication (kg N eq.) | ||
Metal depletion (kg Cu eq.) | ||
Photochemical ozone formation, ecosystems (kg NOx eq.) | ||
Photochemical ozone formation, human health (kg NOx eq.) | ||
Stratospheric ozone depletion (kg CFC-11 eq.) | ||
Terrestrial acidification (kg SO2 eq.) | ||
Terrestrial ecotoxicity (kg 1.4-DB eq.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watjanatepin, P.; Steinwidder, L.; de Schutter, A.; Granata, G.; Vicca, S.; Van Gerven, T.; Van Acker, K. Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS). Mater. Proc. 2023, 15, 36. https://doi.org/10.3390/materproc2023015036
Watjanatepin P, Steinwidder L, de Schutter A, Granata G, Vicca S, Van Gerven T, Van Acker K. Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS). Materials Proceedings. 2023; 15(1):36. https://doi.org/10.3390/materproc2023015036
Chicago/Turabian StyleWatjanatepin, Ponnapat, Laura Steinwidder, Anthony de Schutter, Giuseppe Granata, Sara Vicca, Tom Van Gerven, and Karel Van Acker. 2023. "Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS)" Materials Proceedings 15, no. 1: 36. https://doi.org/10.3390/materproc2023015036
APA StyleWatjanatepin, P., Steinwidder, L., de Schutter, A., Granata, G., Vicca, S., Van Gerven, T., & Van Acker, K. (2023). Preliminary Environmental Assessment of Carbonated Slags as a Carbon Capture, Utilization, and Storage Materials (CCUS). Materials Proceedings, 15(1), 36. https://doi.org/10.3390/materproc2023015036