Camellia-sinensis- and Cocos-nucifera-Derived Gold Nanoparticles for Treatment of Infections Caused by Antibiotic-Resistant Staphylococcus aureus †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characterization of Gold Nanoparticles
3.2. Fourier Transform Infrared Spectroscopy
3.3. Scanning Electron Microscopy
3.4. Transmission Electron Microscopy
3.5. Energy-Dispersive X-ray Spectroscopy
3.6. UV-Visible Spectroscopy
3.7. Antimicrobial Activity
3.8. Minimum Inhibitory Concentration (MIC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Steinig, E.J.; Duchene, S.; Robinson, D.A.; Monecke, S.; Yokoyama, M.; Laabei, M.; Slickers, P.; Andersson, P.; Williamson, D.; Kearns, A.; et al. Evolution and global transmission of a multidrug-resistant, community-associated methicillin-resistant staphylococcus aureus lineage from the Indian subcontinent. MBio 2019, 10, e01105-19. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, S.M.; Emele, F.E.; Nwaokorie, F.O.; Idika, N.; Umeizudike, A.K.; Emeka-Nwabunnia, I.; Hanson, B.M.; Nair, R.; Wardyn, S.E.; Smith, T.C. Molecular typing of antibiotic-resistant Staphylococcus aureus in Nigeria. J. Infect. Public Health 2015, 8, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Paharik, A.E.; Parlet, C.P.; Chung, N.; Todd, D.A.; Rodriguez, E.I.; Van Dyke, M.J.; Cech, N.B.; Horswill, A.R. Coagulase-Negative Staphylococcal Strain Prevents Staphylococcus aureus Colonization and Skin Infection by Blocking Quorum Sensing. Cell Host Microbe 2017, 22, 746–756.e5. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Arshad, M.I.; Aslam, M.A.; Muzammil, S.; Siddique, A.B.; Yasmeen, N.; Khurshid, M.; Rasool, M.; Ahmad, M.; Rasool, M.H.; et al. Bacteriophage Proteome: Insights and Potentials of an Alternate to Antibiotics. Infect. Dis. Ther. 2021, 10, 1171–1193. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Jena, S.; Panda, S.; Sharma, S.; Dhawan, B.; Nath, G.; Singh, N.P.; Nayak, K.C.; Singh, D.V. Antibiotic Susceptibility, Virulence Pattern, and Typing of Staphylococcus aureus Strains Isolated From Variety of Infections in India. Front. Microbiol. 2019, 10, 2763. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Akhtar, B.; Muhammad, F.; Aslam, B.; Saleemi, M.K.; Sharif, A. Pharmacokinetic profile of chitosan modified poly lactic co-glycolic acid biodegradable nanoparticles following oral delivery of gentamicin in rabbits. Int. J. Biol. Macromol. 2020, 164, 1493–1500. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Muhammad, F.; Nguyen, T.D.T.; Raza, A.; Akhtar, B.; Aryal, S. A review on nanoparticle-based technologies for biodetoxification. Drug Chem. Toxicol. 2017, 40, 489–497. [Google Scholar] [CrossRef]
- Geraldes, A.N.; da Silva, A.A.; Leal, J.; Estrada-Villegas, G.M.; Lincopan, N.; Katti, K.V.; Lugatildeo, A.B. Green Nanotechnology from Plant Extracts: Synthesis and Characterization of Gold Nanoparticles. Adv. Nanoparticles 2016, 5, 176–185. [Google Scholar] [CrossRef]
- Moongraksathum, B.; Chen, Y.W. Anatase TiO2 co-doped with silver and ceria for antibacterial application. Catal. Today 2018, 310, 68–74. [Google Scholar] [CrossRef]
- Ganachari, S.V.; Yaradoddi, J.S.; Somappa, S.B.; Mogre, P.; Tapaskar, R.P.; Salimath, B.; Venkataraman, A.; Viswanath, V.J. Green nanotechnology for biomedical, food, and agricultural applications. In Handbook of Ecomaterials; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 4, pp. 2681–2698. ISBN 9783319682556. [Google Scholar]
- Katas, H.; Moden, N.Z.; Lim, C.S.; Celesistinus, T.; Chan, J.Y.; Ganasan, P.; Suleman Ismail Abdalla, S. Biosynthesis and Potential Applications of Silver and Gold Nanoparticles and Their Chitosan-Based Nanocomposites in Nanomedicine. J. Nanotechnol. 2018, 2018, 4290705. [Google Scholar] [CrossRef]
- Manandhar, S.; Luitel, S.; Dahal, R.K. In Vitro Antimicrobial Activity of Some Medicinal Plants against Human Pathogenic Bacteria. J. Trop. Med. 2019, 2019, 1895340. [Google Scholar] [CrossRef] [PubMed]
- Shamaila, S.; Zafar, N.; Riaz, S.; Sharif, R.; Nazir, J.; Naseem, S. Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 2016, 6, 71. [Google Scholar] [CrossRef]
- Elbehiry, A.; Al-Dubaib, M.; Marzouk, E.; Moussa, I. Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats. Microbiologyopen 2019, 8, 698. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Yaqoob, S.B.; Adnan, R.; Rameez Khan, R.M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. [Google Scholar] [CrossRef]
- Anwar, M.; Muhammad, F.; Aslam, B.; Saleemi, M.K. Isolation, characterization and in-vitro antigenicity studies of outer membrane proteins (OMPs) of Salmonella gallinarum coated gold nanoparticles (AuNPs). Immunobiology 2021, 226, 152131. [Google Scholar] [CrossRef]
- ElMitwalli, O.S.; Barakat, O.A.; Daoud, R.M.; Akhtar, S.; Henari, F.Z. Green synthesis of gold nanoparticles using cinnamon bark extract, characterization, and fluorescence activity in Au/eosin Y assemblies. J. Nanoparticle Res. 2020, 22, 309. [Google Scholar] [CrossRef]
- Clarance, P.; Luvankar, B.; Sales, J.; Khusro, A.; Agastian, P.; Tack, J.C.; Al Khulaifi, M.M.; AL-Shwaiman, H.A.; Elgorban, A.M.; Syed, A.; et al. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 2020, 27, 706–712. [Google Scholar] [CrossRef]
- Rodríguez-León, E.; Rodríguez-Vázquez, B.E.; Martínez-Higuera, A.; Rodríguez-Beas, C.; Larios-Rodríguez, E.; Navarro, R.E.; López-Esparza, R.; Iñiguez-Palomares, R.A. Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. Nanoscale Res. Lett. 2019, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Doan, V.D.; Huynh, B.A.; Nguyen, T.D.; Cao, X.T.; Nguyen, V.C.; Nguyen, T.L.H.; Nguyen, H.T.; Le, V.T. Biosynthesis of Silver and Gold Nanoparticles Using Aqueous Extract of Codonopsis pilosula Roots for Antibacterial and Catalytic Applications. J. Nanomater. 2020, 2020, 8492016. [Google Scholar] [CrossRef]
- Folorunso, A.; Akintelu, S.; Oyebamiji, A.K.; Ajayi, S.; Abiola, B.; Abdusalam, I.; Morakinyo, A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostructure Chem. 2019, 9, 111–117. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Rukayadi, Y.; Nor-Khaizura, M.A.R.; Kuan, C.H.; Chieng, B.W.; Nishibuchi, M.; Radu, S. In Vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front. Microbiol. 2018, 9, 1555. [Google Scholar] [CrossRef]
Formulations | Z-Average (nm) | PDI | Zeta Potential |
---|---|---|---|
CSNp | 41.61 | 0.245 | −16.52 |
CNNp | 34.12 | 1 | −14.61 |
Plants | Reducing Agent | Concentration (mg/100 µL) | λmax (nm) |
---|---|---|---|
Camellia sinensis | Camellia sinensis leaves extract | 3.9 | 550 |
Cocos nucifera | Cocos nucifera water | 3.9 | 535 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Factor | 3 | 725.9 | 241.96 | 7.42 | 0.011 |
Error | 8 | 260.9 | 32.61 | ||
Total | 11 | 986.7 |
Different Concentrations of CSNp | Mean ± SD |
---|---|
GTN3 (30 mg/µL) | 20.00 ± 8.66 A |
GTN4 (50 mg/µL) | 16.67 ± 7.22 A |
GTN2 (10 mg/µL) | 3.333 ± 1.444 B |
GTN1 (3.9 mg/µL) | 2.600 ± 1.126 B |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
Factor | 3 | 1826.7 | 608.89 | 8.08 | 0.008 |
Error | 8 | 602.5 | 75.32 | ||
Total | 11 | 2429.2 |
Different Concentrations of CNNp | Mean ± SD |
---|---|
GCN4 (50 mg/µL) | 33.33 ± 14.43 A |
GCN3 (30 mg/µL) | 19.17 ± 9.46 AB |
GCN2 (10 mg/µL) | 4.167 ± 1.443 B |
GCN1 (3.9 mg/µL) | 3.250 ± 1.126 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.; Altaf, S.; Babar, M.S.U.R.; Aslam, B.; Muzaffar, H.; Iftikhar, A. Camellia-sinensis- and Cocos-nucifera-Derived Gold Nanoparticles for Treatment of Infections Caused by Antibiotic-Resistant Staphylococcus aureus . Mater. Proc. 2023, 14, 67. https://doi.org/10.3390/IOCN2023-14469
Anwar S, Altaf S, Babar MSUR, Aslam B, Muzaffar H, Iftikhar A. Camellia-sinensis- and Cocos-nucifera-Derived Gold Nanoparticles for Treatment of Infections Caused by Antibiotic-Resistant Staphylococcus aureus . Materials Proceedings. 2023; 14(1):67. https://doi.org/10.3390/IOCN2023-14469
Chicago/Turabian StyleAnwar, Saman, Sidra Altaf, Muhammad Saif Ur Rehman Babar, Bilal Aslam, Humaira Muzaffar, and Arslan Iftikhar. 2023. "Camellia-sinensis- and Cocos-nucifera-Derived Gold Nanoparticles for Treatment of Infections Caused by Antibiotic-Resistant Staphylococcus aureus " Materials Proceedings 14, no. 1: 67. https://doi.org/10.3390/IOCN2023-14469
APA StyleAnwar, S., Altaf, S., Babar, M. S. U. R., Aslam, B., Muzaffar, H., & Iftikhar, A. (2023). Camellia-sinensis- and Cocos-nucifera-Derived Gold Nanoparticles for Treatment of Infections Caused by Antibiotic-Resistant Staphylococcus aureus . Materials Proceedings, 14(1), 67. https://doi.org/10.3390/IOCN2023-14469