Diabetic Ketoacidosis as a Debut and Immune-Mediated Complication Caused by Pembrolizumab: Case Report
Abstract
1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DKA | diabetic ketoacidosis |
ICI | immune checkpoint inhibitors |
BRAF | v-Raf murine sarcoma viral oncogene homolog B1 |
anti-CTLA4 | antibodies against cytotoxic T lymphocyte antigen 4 |
anti-PD-1 | antibodies against programmed cell death receptor 1 |
anti-PD-L1 | antibodies against programmed cell death receptor ligand 1 |
PET-CT | positron emission tomography |
KDIGO | kidney disease: improving global outcomes |
HbA1C | glycosylated hemoglobin |
TSH | thyroid stimulating hormone |
T4L | free thyroxine |
FSH | follicle stimulating hormone |
LH | luteinizing hormone |
PTHS | sex hormone transport protein |
IGF-1 | insulin-like growth factor 1 |
iSGLT2 | sodium-glucose cotransporter type 2 inhibitors |
ICI-T1DM | ICI-induced type 1 diabetes mellitus |
irAEs | immune-related adverse events |
References
- Azoury, S.C.; Straughan, D.M.; Shukla, V. Immune Checkpoint Inhibitors for Cancer Therapy: Clinical Efficacy and Safety. Curr. Cancer Drug Targets 2015, 15, 452–462. [Google Scholar] [CrossRef] [PubMed]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012, 366, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N. Engl. J. Med. 2018, 378, 158–168. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Lichinitser, M.; Khattak, A.; Carlino, M.S.; et al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. J. Med. 2018, 378, 1789–1801. [Google Scholar] [CrossRef]
- Kuratomi Nakamura, K.; Paredes, A.; Passos-Rangel, X.; Ocampo Posada, M. Diabetic ketoacidosis, a common metabolic emergency. Interdiscip. J. Epidemiol. Public Health 2023, 5, e-9955. [Google Scholar]
- Lima, P.T.F.M.; Cazzoletti, G.; Passos, J.R.C.; Silva, R.R.C.; Rodrigues, L.A.P.; Nogueira, J.C.; Duarte, A.L.D.; Amaral, M.P.R. Cetoacidose Diabética: Fisiopatologia, diagnóstico e abordagem terapêutica. Braz. J. Dev. 2023, 9, 26370–26378. [Google Scholar] [CrossRef]
- Clotman, K.; Janssens, K.; Specenier, P.; Weets, I.; De Block, C.E.M. Programmed Cell Death-1 Inhibitor-Induced Type 1 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2018, 103, 3144–3154. [Google Scholar] [CrossRef]
- Stamatouli, A.M.; Quandt, Z.; Perdigoto, A.L.; Clark, P.L.; Kluger, H.; Weiss, S.A.; Gettinger, S.; Sznol, M.; Young, A.; Rushakoff, R.; et al. Collateral Damage: Insulin-Dependent Diabetes Induced With Checkpoint Inhibitors. Diabetes 2018, 67, 1471–1480. [Google Scholar] [CrossRef]
- Delivanis, D.A.; Gustafson, M.P.; Bornschlegl, S.; Merten, M.M.; Kottschade, L.; Withers, S.; Dietz, A.B.; Ryder, M. Pembrolizumab-Induced Thyroiditis: Comprehensive Clinical Review and Insights into Underlying Involved Mechanisms. J. Clin. Endocrinol. Metab. 2017, 102, 2770–2780. [Google Scholar] [CrossRef] [PubMed]
- Barroso-Sousa, R.; Barry, W.T.; Garrido-Castro, A.C.; Hodi, F.S.; Min, L.; Krop, I.E.; Tolaney, S.M. Incidence of Endocrine Dysfunction Following the Use of Different Immune Checkpoint Inhibitor Regimens: A Systematic Review and Meta-analysis. JAMA Oncol. 2018, 4, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Longoria, T.C.; Tewari, K.S. Evaluation of the pharmacokinetics and metabolism of pembrolizumab in the treatment of melanoma. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.S.; Liu, P.; Baleeiro, R.; Lemoine, N.R.; Yuan, M.; Wang, Y.H. Immune checkpoint inhibitors in cancer therapy. J. Biomed. Res. 2018, 32, 317–326. [Google Scholar] [PubMed]
- Seth, R.; Agarwala, S.S.; Messersmith, H.; Alluri, K.C.; Ascierto, P.A.; Atkins, M.B.; Bollin, K.; Chacon, M.; Davis, N.; Faries, M.B.; et al. Systemic Therapy for Melanoma: ASCO Guideline Update. J. Clin. Oncol. 2023, 41, 4794–4820. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Kicinski, M.; Blank, C.U.; Mandala, M.; Long, G.V.; Atkinson, V.; Dalle, S.; Haydon, A.; Meshcheryakov, A.; Khattak, A.; et al. Five-year analysis of adjuvant pembrolizumab or placebo in stage III melanoma. NEJM Evid. 2022, 1, EVIDoa2200214. [Google Scholar] [CrossRef]
- Luke, J.J.; Rutkowski, P.; Queirolo, P.; Del Vecchio, M.; Mackiewicz, J.; Chiarion-Sileni, V.; Merino, L.d.l.C.; A Khattak, M.; Schadendorf, D.; Long, G.V.; et al. Pembrolizumab versus placebo as adjuvant therapy in completely resected stage IIB or IIC melanoma (KEYNOTE-716): A randomised, double-blind, phase 3 trial. Lancet Lond. Engl. 2022, 399, 1718–1729. [Google Scholar] [CrossRef]
- Larkin, J.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Fernandez, A.M.A.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.-J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab in resected stage III/IV melanoma: 5-year efficacy and biomarker results from CheckMate 238. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 3352–3361. [Google Scholar] [CrossRef]
- Kirkwood, J.M.; Del Vecchio, M.; Weber, J.; Hoeller, C.; Grob, J.J.; Mohr, P.; Loquai, C.; Dutriaux, C.; Chiarion-Sileni, V.; Mackiewicz, J.; et al. Adjuvant nivolumab in resected stage IIB/C melanoma: Primary results from the randomized, phase 3 CheckMate 76K trial. Nat. Med. 2023, 29, 2835–2843. [Google Scholar] [CrossRef]
- Dummer, R.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Kirkwood, J.M.; Sileni, V.C.; Larkin, J.; Nyakas, M.; Dutriaux, C.; et al. Five-year analysis of adjuvant dabrafenib plus trametinib in stage III melanoma. N. Engl. J. Med. 2020, 383, 1139–1148. [Google Scholar] [CrossRef]
- Lao, C.D.; Khushalani, N.I.; Angeles, C.; Petrella, T.M. Current State of Adjuvant Therapy for Melanoma: Less Is More, or More Is Better? Am. Soc. Clin. Oncol. Educ. Book 2022, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Nouri Rouzbahani, F.; Shirkhoda, M.; Memari, F.; Dana, H.; Mahmoodi Chalbatani, G.; Mahmoodzadeh, H.; Samarghandi, N.; Gharagozlou, E.; Mohammadi Hadloo, M.H.; Maleki, A.R.; et al. Immunotherapy a New Hope for Cancer Treatment: A Review. Pak. J. Biol. Sci. 2018, 21, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Salangsang, J.; Sapkota, S.; Kharel, S.; Gupta, P.; Kalla, A. A Case of Pembrolizumab-Induced Diabetic Ketoacidosis and Hyperthyroidism in a Patient with Recurrent Esophageal Adenocarcinoma. Cureus 2023, 15, e35276. [Google Scholar] [CrossRef]
- Maia, A.; Soares, D.M.; Azevedo, S.; Pereira, T.; Amaral, C. Pembrolizumab-induced type 1 diabetes. J. Oncol. Pharm. Pract. 2024, 10781552241255699. [Google Scholar] [CrossRef]
- Sankar, K.; Macfarlane, M.; Cooper, O.; Falk, J. Pembrolizumab-Induced Diabetic Ketoacidosis: A Review of Critical Care Case. Cureus 2021, 13, e18983. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.K.; Chiec, L.; Mohindra, N.; Gentzler, R.; Patel, J.; Giles, F. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes. Cancer Immunol. Immunother. 2017, 66, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Sznol, M.; Postow, M.A.; Davies, M.J.; Pavlick, A.C.; Plimack, E.R.; Shaheen, M.; Veloski, C.; Robert, C. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management. Cancer Treat. Rev. 2017, 58, 70–76. [Google Scholar] [CrossRef]
- Muir, C.A.; Menzies, A.M.; Clifton-Bligh, R.; Tsang VH, M. Thyroid Toxicity Following Immune Checkpoint Inhibitor Treatment in Advanced Cancer. Thyroid. Off. J. Am. Thyroid. Assoc. 2020, 30, 1458–1469. [Google Scholar] [CrossRef]
- Chaker, L.; Cooper, D.S.; Walsh, J.P.; Peeters, R.P. Hyperthyroidism. Lancet 2024, 403, 768–780. [Google Scholar] [CrossRef]
- Kotwal, A.; Haddox, C.; Block, M.; Kudva, Y.C. Immune checkpoint inhibitors: An emerging cause of insulin-dependent diabetes. BMJ Open Diabetes Res. Care 2019, 7, e000591. [Google Scholar] [CrossRef] [PubMed]
- Perdigoto, A.L.; Quandt, Z.; Anderson, M.; Herold, K.C. Checkpoint inhibitor-induced insulin-dependent diabetes: An emerging syndrome. Lancet Diabetes Endocrinol. 2019, 7, 421–423. [Google Scholar] [CrossRef] [PubMed]
- Akturk, H.K.; Kahramangil, D.; Sarwal, A.; Hoffecker, L.; Murad, M.H.; Michels, A.W. Immune checkpoint inhibitor-induced Type 1 diabetes: A systematic review and meta-analysis. Diabet. Med. A J. Br. Diabet. Assoc. 2019, 36, 1075–1081. [Google Scholar] [CrossRef]
- Barski, L.; Golbets, E.; Jotkowitz, A.; Schwarzfuchs, D. Management of diabetic ketoacidosis. Eur. J. Intern. Med. 2023, 117, 38–44. [Google Scholar] [CrossRef]
- Shen, M.; Chen, D.; Zhao, R.; Zheng, X.; Gu, Y.; Yang, T.; Shi, Y. Real-world adherence to toxicity management guidelines for immune checkpoint inhibitor-induced diabetes mellitus. Front. Endocrinol. 2023, 14, 1213225. [Google Scholar] [CrossRef]
- Haanen, J.; Ernstoff, M.S.; Wang, Y.; Menzies, A.M.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.A.; Obeid, M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: Review of the literature and personalized risk-based prevention strategy. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2020, 31, 724–744. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.; Shah, M.; Suarez-Almazor, M.E. Adverse events associated with immune checkpoint blockade in patients with cancer: A systematic review of case reports. PLoS ONE 2016, 11, e0160221. [Google Scholar] [CrossRef]
- Eun, Y.; Kim, I.Y.; Sun, J.-M.; Lee, J.; Cha, H.-S.; Koh, E.-M.; Kim, H.; Lee, J. Risk factors for immune-related adverse events associated with anti-PD-1 pembrolizumab. Sci. Rep. 2019, 9, 14039. [Google Scholar] [CrossRef] [PubMed]
- Chennamadhavuni, A.; Abushahin, L.; Jin, N.; Presley, C.J.; Manne, A. Risk Factors and Biomarkers for Immune-Related Adverse Events: A Practical Guide to Identifying High-Risk Patients and Rechallenging Immune Checkpoint Inhibitors. Front. Immunol. 2022, 13, 779691. [Google Scholar] [CrossRef]
- Vardarli, I.; Tan, S.; Brandenburg, T.; Weidemann, F.; Görges, R.; Herrmann, K.; Führer, D. Risk and Incidence of Endocrine Immune-Related Adverse Effects under Checkpoint Inhibitor Mono- or Combination Therapy in Solid Tumors: A Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2024, 109, 1132–1144. [Google Scholar] [CrossRef]
Laboratory Test | Result | Reference Range |
---|---|---|
Complete Blood Count (CBC) | WBC 15.69 × 103/µL | 4–10 × 103/µL |
ANC 13.34 × 103/µL | 1.8–7 × 103/µL | |
Hb 17.4 g/dL | 13–16 g/dL | |
Hct 58.2% | 40–48% | |
Platelets 441 × 103/µL | 150–450 × 103/µL | |
Creatinine | 1.82 mg/dL | 0.7–1.3 mg/dL |
Blood Urea Nitrogen | 39 mg/dL | 9–23 mg/dL |
Sodium | 132 mEq/L | 135–145 mEq/L |
Potassium | 5.51 mEq/L | 3.5–4.5 mEq/L |
Lactic Acid | 0.94 mmol/L | <2 mmol/L |
Glucose | 764 mg/dL | 70–130 mg/dL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacichana, J.A.; Osorio, L.M.; Restrepo, K.; García, A.F.; Rivas, G.; Liscano, Y. Diabetic Ketoacidosis as a Debut and Immune-Mediated Complication Caused by Pembrolizumab: Case Report. Diabetology 2024, 5, 600-607. https://doi.org/10.3390/diabetology5060043
Pacichana JA, Osorio LM, Restrepo K, García AF, Rivas G, Liscano Y. Diabetic Ketoacidosis as a Debut and Immune-Mediated Complication Caused by Pembrolizumab: Case Report. Diabetology. 2024; 5(6):600-607. https://doi.org/10.3390/diabetology5060043
Chicago/Turabian StylePacichana, Julian Andrés, Luis Miguel Osorio, Katherine Restrepo, Andres Felipe García, Giovanna Rivas, and Yamil Liscano. 2024. "Diabetic Ketoacidosis as a Debut and Immune-Mediated Complication Caused by Pembrolizumab: Case Report" Diabetology 5, no. 6: 600-607. https://doi.org/10.3390/diabetology5060043
APA StylePacichana, J. A., Osorio, L. M., Restrepo, K., García, A. F., Rivas, G., & Liscano, Y. (2024). Diabetic Ketoacidosis as a Debut and Immune-Mediated Complication Caused by Pembrolizumab: Case Report. Diabetology, 5(6), 600-607. https://doi.org/10.3390/diabetology5060043