Is the FINDRISC Tool Useful in Screening Type 2 Diabetes and Metabolic Syndrome in an African Setting? Experience among Young Adults in Urban Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Setting
2.2. Data Collection
2.2.1. Socio-Demographics and FINDRISC Characteristics
2.2.2. Blood Pressure and Anthropometry
2.2.3. Oral Glucose Tolerance Test (OGTT)
2.2.4. Lipid Profile
2.3. Statistical Analysis
3. Results
3.1. Background Characteristics of Study Participants
3.2. FINDRISC as a Predictor of Glucose Intolerance and Diabetes Mellitus
3.3. Diabetes and Metabolic Syndrome across the FINDRISC Categories
3.4. FINDRISC as a Predictor of MetS and MetS Traits
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jameson, J. Harrison’s Principles of Internal Medicine, 18th ed.; Mc GrawHill: New York, NY, USA, 2012; p. 628. [Google Scholar]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Davies, M.J.; Gray, L.J.; Troughton, J.; Gray, A.; Tuomilehto, J.; Farooqi, A.; Khunti, K.; Yates, T.; Diabetes, P. A community based primary prevention programme for type 2 diabetes integrating identi fi cation and lifestyle intervention for prevention: The Let‘s Prevent Diabetes cluster randomised controlled trial. Prev. Med. 2016, 84, 48–56. [Google Scholar] [CrossRef]
- Levitt, N.S. Diabetes in Africa: Epidemiology, management and healthcare challenges. Heart 2008, 94, 1376–1382. [Google Scholar] [CrossRef]
- Lindström, J. The Finnish Diabetes Prevention Study (DPS). Diabetes Care 2003, 26, 3230–3236. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, P.; Li, J.; Lindstrom, J.; Tuomilehto, J. Tools for Predicting the Risk of Type 2 Diabetes in Daily Practice. Horm. Metab. Res. 2009, 41, 86–97. [Google Scholar] [CrossRef]
- Janghorbani, M.; Adineh, H.; Amini, M. Evaluation of the Finnish Diabetes Risk Score (FINDRISC) as a Screening Tool for the Metabolic Syndrome. Rev. Diabet. Stud. 2013, 10, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz-González, M.C.; Lima-Martínez Marcos, M.; Nava, A.; Trerotola, G.; Paoli, M.; Cabrera-Rego, J.O.; Gonzalez, B.; Arciniegas, A.; Paez, J. FINDRISC Modified for Latin America as a Screening Tool for Persons with Impaired Glucose Metabolism in Ciudad Bolívar, Venezuela. Med Princ. Pract. 2019, 28, 324–332. [Google Scholar] [CrossRef]
- Rodríguez, M.G.; Saldaña, M.R.; Leyva, J.M.A.; Rojas, R.M.; Molina-Recio, G. The FINDRISC questionnaire capacity to predict diabetes mellitus II, arterial hypertension and comorbidity in women from low-and-middle-income countries. Health Care Women Int. 2019, 41, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Osman, O.A.; Saeed, A.A.; Mousnad, M.A.; Hamid, A. Assessment of The Risk Of Type 2 Diabetes Among Healthy without Diabetes in Sudan Using the FINDRISC Tool. Univers. J. Pharm. Res. 2020, 5, 37–41. [Google Scholar] [CrossRef]
- Metonnou-Adanhoume, C.G.; Agueh, V.; Hessou, J.; Darboux, J.; Paraïso, M.N.; Azandjeme, C.S.; Sossa, C.J.; Kpozehouen, A. Optimal Threshold of the Finnish Diabetes Risk Score (Findrisc) for Screening at-Risk Adults in an African Population in Southern Benin. Univers. J. Public Health 2019, 7, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Bernabe-Ortiz, A.; Perel, P.; Miranda, J.J.; Smeeth, L. Diagnostic accuracy of the Finnish Diabetes Risk Score (FINDRISC) for undiagnosed T2DM in Peruvian population. Prim. Care Diabetes 2018, 12, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Makrilakis, K.; Liatis, S.; Grammatikou, S.; Perrea, D.; Stathi, C.; Tsiligros, P.; Katsilambros, N. Validation of the Finnish diabetes risk score (FINDRISC) questionnaire for screening for undiagnosed type 2 diabetes, dysglycaemia and the metabolic syndrome in Greece. Diabetes Metab. 2011, 37, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.; Opara, I.I.I.; Ejike, C.E.; Nnamudi, A.C. Diabetes risk score assessment and some adiposity indices in a young adult population in Umudike, Nigeria. Afr. J. Diabetes Med. 2020, 28. Available online: https://www.africanjournalofdiabetesmedicine.com/articles/diabetes-risk-score-assessment-and-some-adiposity-indices-in-a-young-adult-population-in-umudike-nigeria.pdf (accessed on 13 October 2021).
- Alberti, G.; Zimmet, P.; Shaw, J.; Bloomgarden, Z.; Kaufman, F.; Silink, M. Type 2 diabetes in the Young: The Evolving Epidemic. The International Diabetes Federation Consensus Workshop. Diabetes Care 2004, 27, 1798–1811. [Google Scholar] [CrossRef] [Green Version]
- Bergman, M.; Buysschaert, M.; Schwarz, P.E.; Albright, A.; Narayan, K.V.; Yach, D. Diabetes prevention: Global health policy and perspectives from the ground. Diabetes Manag. 2012, 2, 309–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; et al. For The F Innish D Iabetes P Revention S Tudy G Roup. Prevention of Type 2 Diabetes Mellitus by Changes in Lifestyle among Subjects with Impaired Glucose Tolerance. N. Engl. J. Med. 2001, 344, 1343–1350. [Google Scholar] [CrossRef]
- Sullivan, K.M.; MPH, M.H.A. Sample Size for a Cross-Sectional, Cohort, or Clinical Trial Studies. Indian J. Psychol. Med. 2013, 35, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Lindström, J.; Tuomilehto, J. The Diabetes Risk Score, A practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Saleem, S.M.; Khan, S.M.S.; Jan, S.S. Finnish Diabetic Risk Score: A Tool for Predicting Risk of Undiagnosed Type 2 Diabetes Mellitus. Ann. Med. Health Sci. Res. 2017, 7, 295–298. [Google Scholar]
- Wachs, D.D.D. Physiology, Mean Arterial Pressure. Available online: https://www.ncbi.nlm.nih.gov/books/NBK538226/ (accessed on 13 October 2021).
- Westat, I. Anthropometry procedures manual. Natl. Health Nutr. Examinatory Surv. (NHANES) 2007, 102. Available online: https://wwwn.cdc.gov/nchs/data/nhanes/2017-2018/manuals/2017_Anthropometry_Procedures_Manual.pdf (accessed on 13 October 2021).
- WHO. Waist Circumference and Waist–Hip Ratio: Report of a WHO Expert Consultation, Geneva, 8–11; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Zhu, L.; Spence, C.; Yang, J.W.; Ma, G.X. The IDF Definition Is Better Suited for Screening Metabolic Syndrome and Estimating Risks of Diabetes in Asian American Adults: Evidence from NHANES 2011–2016. J. Clin. Med. 2020, 9, 3871. [Google Scholar] [CrossRef]
- WHO. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia; WHO: Geneva, Switzerland, 2006; p. 50. ISBN 9241594934. [Google Scholar]
- Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018, 6, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Stanifer, J.W.; Cleland, C.R.; Makuka, G.J.; Egger, J.R.; Maro, V.; Maro, H.; Karia, F.; Patel, U.D.; Burton, M.J.; Philippin, H. Prevalence, Risk Factors, and Complications of Diabetes in the Kilimanjaro Region: A Population-Based Study from Tanzania. PLoS ONE 2016, 11, e0164428. [Google Scholar] [CrossRef] [Green Version]
- Nsanya, M.K.; Kavishe, B.B.; Katende, D.; Mosha, N.; Hansen, C.; Nsubuga, R.N.; Munderi, P.; Grosskurth, H.; Kapiga, S. Prevalence of high blood pressure and associated factors among adolescents and young people in Tanzania and Uganda. J. Clin. Hypertens. 2019, 21, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Commodore-Mensah, Y.; Selvin, E.; Aboagye, J.; Turkson-Ocran, R.-A.; Li, X.; Himmelfarb, C.D.; Ahima, R.S.; Cooper, L.A.; Kavishe, B.; Biraro, S.; et al. Elevated blood pressure among primary school children in Dar es salaam, Tanzania: Prevalence and risk factors. BMC Pediatri. 2017, 18, 54. [Google Scholar] [CrossRef] [Green Version]
- Narang, R.; Saxena, A.; Desai, A.; Ramakrishnan, S.; Thangjam, R.S.; Kulkarni, S.; Narvencar, K.; Jacques’ e Costa, A.K.; Dias, A.; Sukharamwala, R.; et al. Prevalence and determinants of hypertension in apparently healthy schoolchildren in India: A multi-center study. Eur. J. Prev. Cardiol. 2018, 25, 1775–1784. [Google Scholar] [CrossRef] [PubMed]
- Sawant, A.; Shetty, D.; Mankeswar, R.; Ashavaid, T. Prevalence of Dyslipidemia in Young Adult Indian Population. Japi 2008, 56, 99–102. [Google Scholar] [PubMed]
- Munyogwa, M.J.; Mtumwa, A.H. The Prevalence of Abdominal Obesity and Its Correlates among the Adults in Dodoma Region, Tanzania: A Community-Based Cross-Sectional Study. Adv. Med. 2018, 2018, 6123156. [Google Scholar] [CrossRef] [Green Version]
- Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 2014, 103, 137–149. [Google Scholar] [CrossRef]
- Laaksonen, D.E.; Uusitupa, M.; Louheranta, A.; Lindström, J.; Valle, T.; Sundvall, J.; Eriksson, J.; Tuomilehto, J. The Finnish Diabetes Prevention Study. Br. J. Nutr. 2005, 83 (Suppl. 1), S137–S142. [Google Scholar] [CrossRef]
- Stiglic, G.; Fijacko, N.; Stozer, A.; Sheikh, A.; Pajnkihar, M. Validation of the Finnish Diabetes Risk Score (FINDRISC) questionnaire for undiagnosed type 2 diabetes screening in the Slovenian working population. Diabetes Res. Clin. Pract. 2016, 120, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.; Sharbaji, S.; Sharbaji, M.; Daher, Z.; Faour, T.; Mansour, Z.; Hneino, M. Diagnostic accuracy of the Finnish Diabetes Risk Score for the prediction of undiagnosed type 2 diabetes, prediabetes, and metabolic syndrome in the Lebanese University. Diabetol. Metab. Syndr. 2020, 12, 84. [Google Scholar] [CrossRef] [PubMed]
- Dalal, S.; Beunza, J.J.; Volmink, J.; Adebamowo, C.; Bajunirwe, F.; Njelekela, M.; Mozaffarian, D.; Fawzi, W.; Willett, W.; Adami, H.O.; et al. Non-communicable diseases in sub-Saharan Africa: What we know now. Int. J. Epidemiol. 2011, 40, 885–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | Median (IQR)/n (%) |
---|---|
Number of subject enrolled, N | 259 |
Age in years, Median (IQR) | 21 (19–27) |
Female Sex | 156 (60.2) |
Education level, N (%) | |
None | 1 (0.4) |
Primary | 33 (12.7) |
Secondary | 29 (11.2) |
College and higher | 196 (75.7) |
Occupation, n (%) | |
Employed | 38 (14.7) |
Not employed | 9 (3.5) |
Self employed | 39 (15.0) |
Students | 173 (66.8) |
Diabetes mellitus | 19 (7.76) |
Prediabetes | 38 (15.51) |
Hypertension | 91 (35.1) |
Obesity | 21 (8.1) |
Overweight | 44 (17) |
Dyslipidemia | 115 (44.4) |
Central obesity | 38 (14.7) |
Metabolic syndrome (MetS) | 11 (4.3) |
Parameter | FINDRISC Points | N (%) | ||
---|---|---|---|---|
Age-groups (years) | <45 | 0 | 259 (100) | |
45–54 | 2 | - | ||
54–64 | 3 | - | ||
>64 | 4 | - | ||
BMI categories (kg/m2) | <25 | 0 | 192 (74.1) | |
25–30 | 1 | 45 (17.4) | ||
>30 | 3 | 22 (8.5) | ||
Waist circumference (cm) | Men | Women | ||
<94 | <80 | 0 | 162 (62.6) | |
94–102 | 80–88 | 3 | 59 (22.8) | |
>102 | >88 | 4 | 38 (14.7) | |
Physically active? | Yes | 0 | 65 (25.1) | |
No | 2 | 194 (74.9) | ||
Eating vegetables daily | Yes | 0 | 187 (72.2) | |
No | 1 | 72 (27.8) | ||
Personal history of hypertension | No | 0 | 247 (95.4) | |
Yes | 2 | 12 (4.6) | ||
Personal history of hyperglycemia | No | 0 | 249 (96.1) | |
Yes | 5 | 10 (3.9) | ||
Family history of diabetes, n (%) | No | 0 | 188 (72.5) | |
Yes, first-degree relative | 3 | 49 (18.9) | ||
Yes, second-degree relative | 5 | 22 (8.6) | ||
FINDRISC score | <7 (low risk) | 0–6 | 174 (67.2) | |
7–11 (slightly elevated risk) | 7–11 | 74 (28.6) | ||
12–15 (moderate risk) | 12–15 | 6 (2.3) | ||
15–20 (high risk) | 15–20 | 4 (1.5) | ||
>20 (very high risk) | 20–26 | 1 (0.4) |
95% Confidence Interval | |||
---|---|---|---|
Prevalence | 24.70% | 19.60% | 30.40% |
Sensitivity | 39.10% | 27.10% | 52.10% |
Specificity | 69.20% | 62.20% | 75.60% |
ROC area | 0.54 | 0.47 | 0.61 |
Positive likelihood ratio | 1.27 | 0.88 | 1.84 |
Negative likelihood ratio | 0.88 | 0.71 | 1.09 |
Odds ratio LR | 1.44 | 0.81 | 2.59 |
Positive predictive value | 29.40% | 20.00% | 40.30% |
Negative predictive value | 77.60% | 70.70% | 83.50% |
FINDRISC Score | 0–6 | 7–11 | 12–14 | 15–20 | 20–26 | Total (Row) | * p-Value | |
---|---|---|---|---|---|---|---|---|
174 | 74 | 6 | 4 | 1 | 259 | |||
OGTT | NGT(202) | 131 (69.3) | 48 (25.4) | 5 (2.7) | 4 (2.1) | 1 (0.5) | 189 | |
Isolated IFG | 14 (66.7) | 7 (33.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 21 | ||
IGT | 24 (60.0) | 15 (37.5) | 1 (2.5) | 0 (0.0) | 0 (0.0) | 40 | 0.7 | |
DM | 12 (60.0) | 8 (40.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 20 | ||
Metabolic syndrome * (IDF) | 2 (18.2) | 5 (45.5) | 0 (0.0) | 3 (27.3) | 1 (9.1) | 11 | 0.001 | |
MetS traits abnormality (IDF) | WC (Abd obesity) | 18 (22.0) | 53 (64.6) | 6 (7.3) | 4 (4.9) | 1 (1.2) | 82 | 0.001 |
TG (high trig) | 22 (73.3) | 7 (23.3) | 0 (0.0) | 1 (3.3) | 0 (0.0) | 30 | 0.7 | |
HDL-C (Low HDL) | 19 (57.6) | 10 (30.3) | 1 (3.0) | 2 (6.1) | 1 (3.0) | 33 | 0.01 | |
BP (High) | 61 (67.0) | 24 (26.4) | 2 (2.2) | 3 (3.3) | 1 (1.1) | 91 | 0.3 | |
FPG (High) | 4 (57.1) | 2 (28.6) | 0 (0.0) | 0 (0.0) | 1 (14.3) | 7 | 0.001 |
MetS Criteria | Univariable | Multivariable | ||
---|---|---|---|---|
R2 | p Value | Adjusted R2 | p Value | |
MetS 1 | 0.00 | 0.96 | ||
MetS 2 | 0.03 | 0.005 | 0.05 | 0.02 |
MetS 3 | 0.00 | 0.96 | ||
MetS 4 | 0.04 | 0.001 | 0.04 | 0.07 |
MetS 5 | 0.14 | 0.001 | 0.13 | 0.001 |
MetS 6 | 0.05 | 0.001 | 0.04 | 0.002 |
MetS | 0.13 | 0.001 | 0.13 | 0.001 |
WHR | 0.12 | 0.001 | 0.36 | 0.001 |
FBG | 0.02 | 0.05 | 0.02 | 0.2 |
DBP | 0.04 | 0.002 | 0.14 | 0.06 |
SBP | 0.00 | 0.8 | ||
TG | 0.00 | 0.3 | ||
HDL | 0.00 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malindisa, E.K.; Balandya, E.; Mashili, F.; Njelekela, M. Is the FINDRISC Tool Useful in Screening Type 2 Diabetes and Metabolic Syndrome in an African Setting? Experience among Young Adults in Urban Tanzania. Diabetology 2021, 2, 240-249. https://doi.org/10.3390/diabetology2040022
Malindisa EK, Balandya E, Mashili F, Njelekela M. Is the FINDRISC Tool Useful in Screening Type 2 Diabetes and Metabolic Syndrome in an African Setting? Experience among Young Adults in Urban Tanzania. Diabetology. 2021; 2(4):240-249. https://doi.org/10.3390/diabetology2040022
Chicago/Turabian StyleMalindisa, Evangelista Kenan, Emmanuel Balandya, Fredirick Mashili, and Marina Njelekela. 2021. "Is the FINDRISC Tool Useful in Screening Type 2 Diabetes and Metabolic Syndrome in an African Setting? Experience among Young Adults in Urban Tanzania" Diabetology 2, no. 4: 240-249. https://doi.org/10.3390/diabetology2040022
APA StyleMalindisa, E. K., Balandya, E., Mashili, F., & Njelekela, M. (2021). Is the FINDRISC Tool Useful in Screening Type 2 Diabetes and Metabolic Syndrome in an African Setting? Experience among Young Adults in Urban Tanzania. Diabetology, 2(4), 240-249. https://doi.org/10.3390/diabetology2040022