Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications
Abstract
:1. Introduction
2. Assessment of the Method Greenness
3. Case Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowak, P.M.; Wietecha-Posłuszny, R.; Pawliszyn, J. White Analytical Chemistry: An Approach to Reconcile the Principles of Green Analytical Chemistry and Functionality. TrAC Trends Anal. Chem. 2021, 138, 116223. [Google Scholar] [CrossRef]
- Locatelli, M.; Kabir, A.; Perrucci, M.; Ulusoy, S.; Ulusoy, H.I.; Ali, I. Green Profile Tools: Current Status and Future Perspectives. Adv. Sample Prep. 2023, 6, 100068. [Google Scholar] [CrossRef]
- Kowtharapu, L.P.; Katari, N.K.; Muchakayala, S.K.; Marisetti, V.M. Green Metric Tools for Analytical Methods Assessment Critical Review, Case Studies and Crucify. TrAC Trends Anal. Chem. 2023, 166, 117196. [Google Scholar] [CrossRef]
- Saroj, S.; Shah, P.; Jairaj, V.; Rathod, R. Green Analytical Chemistry and Quality by Design: A Combined Approach towards Robust and Sustainable Modern Analysis. Curr. Anal. Chem. 2018, 14, 367–381. [Google Scholar] [CrossRef]
- Kokosa, J.M. Selecting an Extraction Solvent for a Greener Liquid Phase Microextraction (LPME) Mode-Based Analytical Method. TrAC Trends Anal. Chem. 2019, 118, 238–247. [Google Scholar] [CrossRef]
- Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J.; Wojnowski, W. Complementary Green Analytical Procedure Index (ComplexGAPI) and Software. Green Chem. 2021, 23, 8657–8665. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Płotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep–Analytical Greenness Metric for Sample Preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Sajid, M.; Płotka-Wasylka, J. Green Analytical Chemistry Metrics: A Review. Talanta 2022, 238, 123046. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, Y.A.; Ibrahim, A.E.; El Deeb, S.; Sayed, R.A. Green Chemometric Determination of Cefotaxime Sodium in the Presence of Its Degradation Impurities Using Different Multivariate Data Processing Tools; GAPI and AGREE Greenness Evaluation. Molecules 2023, 28, 2187. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.M.; Hammad, S.F.; El-Malla, S.F. Green Spectrophotometric Methods for Determination of a Monosodium Glutamate in Different Matrices. Microchem. J. 2021, 169, 106622. [Google Scholar] [CrossRef]
- Magdy, G.; Abdel Hakiem, A.F.; Belal, F.; Abdel-Megied, A.M. Green One-Pot Synthesis of Nitrogen and Sulfur Co-Doped Carbon Quantum Dots as New Fluorescent Nanosensors for Determination of Salinomycin and Maduramicin in Food Samples. Food Chem. 2021, 343, 128539. [Google Scholar] [CrossRef]
- Megahed, S.M.; Habib, A.A.; Hammad, S.F.; Kamal, A.H. Experimental Design Approach for Development of Spectrofluorimetric Method for Determination of Favipiravir; a Potential Therapeutic Agent against COVID-19 Virus: Application to Spiked Human Plasma. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 249, 119241. [Google Scholar] [CrossRef]
- Haq, N.; Iqbal, M.; Alanazi, F.K.; Alsarra, I.A.; Shakeel, F. Applying Green Analytical Chemistry for Rapid Analysis of Drugs: Adding Health to Pharmaceutical Industry. Arab. J. Chem. 2017, 10, S777–S785. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, T.I.; Mercier, O.; Gaudin, K. Green Reversed-Phase HPLC Development Strategy: Application to Artesunate and Amodiaquine Analysis. J. Sep. Sci. 2020, 43, 4390–4404. [Google Scholar] [CrossRef]
- Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef]
- Shi, M.; Zheng, X.; Zhang, N.; Guo, Y.; Liu, M.; Yin, L. Overview of Sixteen Green Analytical Chemistry Metrics for Evaluation of the Greenness of Analytical Methods. TrAC Trends Anal. Chem. 2023, 166, 117211. [Google Scholar] [CrossRef]
- Mansour, F.R.; Omer, K.M.; Płotka-Wasylka, J. A Total Scoring System and Software for Complex Modified GAPI (ComplexMoGAPI) Application in the Assessment of Method Greenness. Green Anal. Chem. 2024, 10, 100126. [Google Scholar] [CrossRef]
- Kannouma, R.E.; Hammad, M.A.; Kamal, A.H.; Mansour, F.R. A Dispersive Liquid–Liquid Microextraction Method Based on Solidification of Floating Organic Droplet for Determination of Antiviral Agents in Environmental Water Using HPLC/UV. Microchem. J. 2021, 171, 106790. [Google Scholar] [CrossRef]
- Mabrouk, M.M.; Soliman, S.M.; El-Agizy, H.M.; Mansour, F.R. Ultrasound-Assisted Dispersive Liquid–Liquid Microextraction for Determination of Three Gliflozins in Human Plasma by HPLC/DAD. J. Chromatogr. B 2020, 1136, 121932. [Google Scholar] [CrossRef]
- Fasciano, J.M.; Mansour, F.R.; Danielson, N.D. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column. J. Chromatogr. Sci. 2016, 54, 958–970. [Google Scholar] [CrossRef] [PubMed]
- El-Hassanein, A.M.; Mansour, F.R.; Hammad, S.F.; Abdella, A.A. Simple Colorimetric Paper-Based Test Strip for Point-of-Use Quality Testing of Ethanol-Based Hand Sanitizers. RSC Adv. 2024, 14, 8188–8194. [Google Scholar] [CrossRef]
Category | Color (Points) | ||
---|---|---|---|
Green (3) | Yellow (2) | Red (1) | |
Sample preparation | |||
Collection (1) | In-line | Online or at-line | Offline |
Preservation (2) | None | Chemical or physical | Physicochemical |
Transport (3) | None | Required | — |
Storage (4) | None | Under normal conditions | Under special conditions |
Type of method: direct or indirect (5) | No sample preparation | Simple procedures, e.g., filtration and decantation | Extraction required |
Scale of extraction (6) | Nanoextraction | Microextraction | Macroextraction |
Solvents/reagents used (7) | Solvent-free methods | Green solvents/reagents used | Non-green solvents/reagents used |
Additional treatments (8) | None | Simple treatments (extract clean up, solvent removal, etc.) | Advanced treatments (derivatization, mineralization, etc.) |
Reagents and solvents | |||
Amount (9) | <10 mL (<10 g) | 10–100 mL (10–100 g) | >100 mL (>100 g) |
Health hazard (10) | Slightly toxic, slightly irritant; NFPA health hazard score is 0 or 1 | Moderately toxic; could cause temporary incapacitation; NFPA = 2 or 3 | Serious injury on short-term exposure; known or suspected small animal carcinogen; NFPA = 4 |
Safety hazard (11) | Highest NFPA flammability, instability score of 0 or 1. No special hazards. | Highest NFPA flammability or instability score is 2 or 3, or a special hazard is used. | Highest NFPA flammability or instability score is 4 |
Instrumentation | |||
Energy (12) | ≤0.1 kW h per sample | ≤1.5 kW h per sample | >1.5 kW h per sample |
Occupational hazard (13) | Hermetization of the analytical process | — | Emission of vapors to the atmosphere |
Waste (14) | <1 mL (<1 g) | 1–10 mL (1–10 g) | >10 mL (<10 g) |
Waste treatment (15) | Recycling | Degradation, passivation | No treatment |
ADDITIONAL MARK: QUANTIFICATION | |||
Oval in the middle of GAPI: Procedure for qualification and quantification (5) | No oval in the middle of GAPI: Procedure only for qualification (1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansour, F.R.; Płotka-Wasylka, J.; Locatelli, M. Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica 2024, 5, 451-457. https://doi.org/10.3390/analytica5030030
Mansour FR, Płotka-Wasylka J, Locatelli M. Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica. 2024; 5(3):451-457. https://doi.org/10.3390/analytica5030030
Chicago/Turabian StyleMansour, Fotouh R., Justyna Płotka-Wasylka, and Marcello Locatelli. 2024. "Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications" Analytica 5, no. 3: 451-457. https://doi.org/10.3390/analytica5030030
APA StyleMansour, F. R., Płotka-Wasylka, J., & Locatelli, M. (2024). Modified GAPI (MoGAPI) Tool and Software for the Assessment of Method Greenness: Case Studies and Applications. Analytica, 5(3), 451-457. https://doi.org/10.3390/analytica5030030