Finite Element Simulation on Irradiation Effect of Nuclear Graphite with Real Three-Dimensional Pore Structure
Abstract
1. Introduction
2. Materials and Methods
2.1. Nuclear Graphite and XCT Testing
2.2. ManUMAT Simulation Method and Constitutive Equation
- (1)
- Elastic strain
- (2)
- Thermal strain
- (3)
- Dimensional change strain
- (4)
- Irradiation creep
- (5)
- Interaction strain
2.3. Numerical Calculation Method
3. Results and Discussion
3.1. FEM of AGR Graphite Brick Case
3.2. Simulation of Nuclear Graphite Components in High-Temperature Gas-Cooled Reactors
3.3. Finite Element Simulation of Nuclear Graphite Based on XCT Three-Dimensional Pore Structure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- U.S. Department of Energy Office of Nuclear Energy, Science and Technology. A Technology Roadmap for Generation IV Nuclear Energy Systems; USDOE: Washington, DC, USA, 2002.
- Zhang, Z.; Wu, Z.; Sun, Y.; Li, F. Design Aspects of the Chinese Modular High-Temperature Gas-Cooled Reactor HTR-PM. Nucl. Eng. Des. 2006, 236, 485–490. [Google Scholar] [CrossRef]
- Zhou, X.; Tang, Y.; Lu, Z.; Zhang, J.; Liu, B. Nuclear Graphite for High Temperature Gas-Cooled Reactors. New Carbon Mater. 2017, 32, 193–204. [Google Scholar] [CrossRef]
- Brocklehurst, J.E.; Kelly, B.T. Analysis of the Dimensional Changes and Structural Changes in Polycrystalline Graphite under Fast Neutron Irradiation. Carbon 1993, 31, 155–178. [Google Scholar] [CrossRef]
- Tsang, D.K.L.; Marsden, B.J. The Development of a Stress Analysis Code for Nuclear Graphite Components in Gas-Cooled Reactors. J. Nucl. Mater. 2006, 350, 208–220. [Google Scholar] [CrossRef]
- Tsang, D.K.L. Material model for stress analysis of nuclear graphite component subject to irradiation. Sci. Sin. Phys. Mech. Astron. 2019, 49, 114609. [Google Scholar] [CrossRef]
- Tsang, D.K.L.; Marsden, B.J. A Mathematical Stress Analysis Model for Isotropic Nuclear Graphite under Irradiation Condition. J. Appl. Math. Mech. 2005, 4, 1–19. [Google Scholar]
- Wang, H.; Yu, S. Uncertainties of Creep Model in Stress Analysis and Life Prediction of Graphite Component. Nucl. Eng. Des. 2008, 238, 2256–2260. [Google Scholar] [CrossRef]
- Yu, S.; Li, H.; Wang, C.; Zhang, Z. Probability Assessment of Graphite Brick in the HTR-10. Nucl. Eng. Des. 2004, 227, 133–142. [Google Scholar] [CrossRef]
- Fang, X.; Yu, S.; Wang, H. Effect of In-Core Temperature on the Life Evaluation of Graphite Component. In Proceedings of the 17th International Conference on Nuclear Engineering, Brussels, Belgium, 12–16 July 2009; Volume 4, pp. 657–660. [Google Scholar]
- Fang, X.; Wang, H.; Yu, S. Effect of Irradiation Deformation and Graphite Varieties on the Irradiation Equivalent Stress and Life of Nuclear Graphite. In Proceedings of the 18th International Conference on Nuclear Engineering, Xi’an, China, 17–21 May 2010; Volume 5, pp. 697–700. [Google Scholar]
- Yu, S.; Fang, X.; Wang, H.; Li, C. Failure Probability Study of HTR Graphite Component Using Microstructure-Based Model. Nucl. Eng. Des. 2012, 253, 192–199. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Yang, X.; Yu, S. The Reliability Prediction of HTR’s Graphite Component in Various Temperature and Neutron Dose Levels. In Proceedings of the 2013 21st International Conference on Nuclear Engineering, Chengdu, China, 29 July–2 August 2013; Volume 2, p. V002T03A028. [Google Scholar]
- Fang, X.; Wang, H.; Yu, S. The Stress and Reliability Analysis of HTR’s Graphite Component. Sci. Technol. Nucl. Install. 2014, 2014, 964848. [Google Scholar] [CrossRef]
- Fang, X.; Yu, S.; Wang, H.; Li, C. The Mechanical Behavior and Reliability Prediction of the HTR Graphite Component at Various Temperature and Neutron Dose Ranges. Nucl. Eng. Des. 2014, 276, 9–18. [Google Scholar] [CrossRef]
- KTA-3232; HTR Ceramic Pressure for Vessels Internals. Nuclear Safety Standards Commission: Berlin, Germany, 1992.
- ASME III Division 5: High Temperature Reactors; ASME Boiler and Pressure Vessel Code; ASME: New York, NY, USA, 2015.
- Wang, H.; Shi, L.; Wang, X.; Sun, L.; Wu, X. Study on Application of Probabilistic Method in ASME Standard on Fine-grained Graphite. At. Energy Sci. Technol. 2017, 51, 6. [Google Scholar]
- Ding, D.; Gao, Y.; Yang, X.; Zhong, Y.; Zeng, G. Study on improved probability evaluation method of nuclear graphite based on ASME specification. Nucl. Tech. 2019, 42, 6. [Google Scholar]
- Arregui-Mena, J.D.; Worth, R.N.; Hall, G.; Edmondson, P.D.; Giorla, A.B.; Burchell, T.D. A Review of Finite Element Method Models for Nuclear Graphite Applications. Arch. Comput. Methods Eng. 2020, 27, 331–350. [Google Scholar] [CrossRef]
- Doroszko, M.; Seweryn, A. A New Numerical Modelling Method for Deformation Behaviour of Metallic Porous Materials Using X-Ray Computed Microtomography. Mater. Sci. Eng. A 2017, 689, 142–156. [Google Scholar] [CrossRef]
- Li, Z.; Chen, D.; Fu, X.; Miao, W.; Zhang, Z. The Influence of Pores on Irradiation Property of Selected Nuclear Graphites. Adv. Mater. Sci. Eng. 2012, 2012, 640462. [Google Scholar] [CrossRef]
- Matthews, A.C.; Kane, J.J.; Swank, W.D.; Windes, W.E. Nuclear Graphite Strength Degradation under Varying Oxidizing Conditions. Nucl. Eng. Des. 2021, 379, 111245. [Google Scholar] [CrossRef]
- Wang, Y.; Tsang, D.; Zhang, Y.; Zhang, Q.; Zhu, F.; Song, L.; Ma, X. Insights into Irradiation Creep Coefficient in Nuclear Graphite from Machine Learning. Nucl. Eng. Technol. 2025, 57, 103559. [Google Scholar] [CrossRef]
- Berre, C.; Fok, S.L.; Marsden, B.J.; Babout, L.; Hodgkins, A.; Marrow, T.J.; Mummery, P.M. Numerical Modelling of the Effects of Porosity Changes on the Mechanical Properties of Nuclear Graphite. J. Nucl. Mater. 2006, 352, 1–5. [Google Scholar] [CrossRef]
- Berre, C.; Fok, S.L.; Marsden, B.J.; Mummery, P.M.; Marrow, T.J.; Neighbour, G.B. Microstructural Modelling of Nuclear Graphite Using Multi-Phase Models. J. Nucl. Mater. 2008, 380, 46–58. [Google Scholar] [CrossRef]
- Arregui-Mena, J.D.; Griffiths, D.V.; Worth, R.N.; Torrence, C.E.; Selby, A.; Contescu, C.; Gallego, N.; Edmondson, P.D.; Mummery, P.M.; Margetts, L. Using Porous Random Fields to Predict the Elastic Modulus of Unoxidized and Oxidized Superfine Graphite. Mater. Des. 2022, 220, 110840. [Google Scholar] [CrossRef]
- Fenton, G.A.; Griffiths, D.V. Random Field Generation and the Local Average Subdivision Method. In Probabilistic Methods in Geotechnical Engineering; Griffiths, D.V., Fenton, G.A., Eds.; CISM Courses and Lectures; Springer: Vienna, Austria, 2007; Volume 491, pp. 201–223. ISBN 978-3-211-73365-3. [Google Scholar]
- Paiboon, J.; Griffiths, D.V.; Huang, J.; Fenton, G.A. Numerical Analysis of Effective Elastic Properties of Geomaterials Containing Voids Using 3D Random Fields and Finite Elements. Int. J. Solids Struct. 2013, 50, 3233–3241. [Google Scholar] [CrossRef]
- Margetts, L.; Mena, J.; Mummery, P. The Stochastic Finite Element Method and Its Possible Use in Thermo-Mechanical Drift Calculations. In Proceedings of the 2nd PACMAN Workshop, Debrecen, Hungary, 12–15 June 2016. [Google Scholar]
- Yang, X. Study on Material Properties of Nuclear Graphite and Stress Analysis of Nuclear Graphite Component in Molten Salt Reactor. Doctoral Dissertation, University of Chinese Academy of Sciences, Shanghai, China, 2019. [Google Scholar]
- Yang, X.; Wang, X.; Tsang, D.K.L. The Effect of Thermal Oxidation on the Coefficient of Thermal Expansion of Nuclear Graphite. J. Mater. Sci. 2020, 55, 7805–7815. [Google Scholar] [CrossRef]
- Arregui-Mena, J.D.; Griffiths, D.; Worth, R.N.; Torrence, C.E.; Selby, A.; Contescu, C.; Gallego, N.; Edmondson, P.D.; Mummery, P.M.; Margetts, L. Microstructural Characterization Data of as Received IG-110, 2114 and ETU-10 Nuclear Graphite Grades and Oxidation Characterization Data of IG-110. Data Brief 2022, 11, 108535. [Google Scholar] [CrossRef]
- Kane, J.; Karthik, C.; Butt, D.P.; Windes, W.E.; Ubic, R. Microstructural Characterization and Pore Structure Analysis of Nuclear Graphite. J. Nucl. Mater. 2011, 415, 189–197. [Google Scholar] [CrossRef]
- Kim, E.; No, H. Experimental Study on the Oxidation of Nuclear Graphite and Development of an Oxidation Model. J. Nucl. Mater. 2006, 349, 182–194. [Google Scholar] [CrossRef]
- Oh, C.H.; Kim, E.S. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents; Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2009; p. 974349. [Google Scholar]
- Yan, R.; Dong, Y.; Zhou, Y.; Sun, X.; Li, Z. Investigation of Oxidation Behaviors of Nuclear Graphite Being Developed and IG-110 Based on Gas Analysis. J. Nucl. Sci. Technol. 2017, 54, 1168–1177. [Google Scholar] [CrossRef]
- Tsang, D.K.L.; Marsden, B.J. Constitutive Material Model for the Prediction of Stresses in Irradiated Anisotropic Graphite Components. J. Nucl. Mater. 2008, 381, 129–136. [Google Scholar] [CrossRef]
- Kelly, B.T.; Burchell, T.D. The Analysis of Irradiation Creep Experiments on Nuclear Reactor Graphite. Carbon 1994, 32, 119–125. [Google Scholar] [CrossRef]
- Tian, D.; Shi, L.; Sun, L.; Zhang, Z.; Zhang, Z.; Zhang, Z. Installation of the Graphite Internals in HTR-PM. Nucl. Eng. Des. 2020, 363, 110585. [Google Scholar] [CrossRef]








| Graphite | Forming Method | Grain Size | Porosity | Young’s Modulus | Thermal Conductivity | Coefficient of Thermal Expansion |
|---|---|---|---|---|---|---|
| IG-110 | Isostatic pressure | ~20 μm [34] | 21.6% [35] | 9.8 GPa [36] | 120 W/(m·K) [36] | 4.06 × 10−6/K 1 [37] |
| Time (fpy) | Before Startup | 22 | After Closing | |||
|---|---|---|---|---|---|---|
| Location (ri = 150 mm, re = 300 mm) | ri | re | ri | re | ri | re |
| Temperature (°C) | 20 | 20 | 500 | 400 | 20 | 20 |
| Neutron irradiation dose (1020 n/cm2 EDND) | 0 | 0 | 160 | 80 | 160 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Lv, S.; Ma, Y.; Tian, C.; Gao, J.; Zhao, Y.; Li, Z. Finite Element Simulation on Irradiation Effect of Nuclear Graphite with Real Three-Dimensional Pore Structure. J. Nucl. Eng. 2026, 7, 4. https://doi.org/10.3390/jne7010004
Lv S, Ma Y, Tian C, Gao J, Zhao Y, Li Z. Finite Element Simulation on Irradiation Effect of Nuclear Graphite with Real Three-Dimensional Pore Structure. Journal of Nuclear Engineering. 2026; 7(1):4. https://doi.org/10.3390/jne7010004
Chicago/Turabian StyleLv, Shasha, Yingtao Ma, Chong Tian, Jie Gao, Yumeng Zhao, and Zhengcao Li. 2026. "Finite Element Simulation on Irradiation Effect of Nuclear Graphite with Real Three-Dimensional Pore Structure" Journal of Nuclear Engineering 7, no. 1: 4. https://doi.org/10.3390/jne7010004
APA StyleLv, S., Ma, Y., Tian, C., Gao, J., Zhao, Y., & Li, Z. (2026). Finite Element Simulation on Irradiation Effect of Nuclear Graphite with Real Three-Dimensional Pore Structure. Journal of Nuclear Engineering, 7(1), 4. https://doi.org/10.3390/jne7010004

